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of analytic functions. It was founded around the turn of the 20th century and has remained one of the active

fields of the current research. In this paper, we study certain geometric properties like κ-uniformly convexity and

κ-starlikeness of ℓ-Hypergeometric function and then we prove Alexander transform of ℓ-Hypergeometric function
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1 Introduction

Let A(D1(0)) denote the class of analytic functions in the open unit disk D1(0) = {z ∈ C : |z| <
1}. Let C be the class of all functions f ∈ A(D1(0)) which are normalized by f(0) = 0 and
f ′(0) = 1 and have the form (Maharana et al., 2018; Mehrez, 2019; Oluwayemi & Faisal, 2021;
Ponnusamy et al., 2011; Ponnusamy & Vuorinen, 2001; Prajapat, 2014, 2011; Purohit, 2012;
Vidyasagar, 2020)

f(z) = z +
∞∑
n=2

anz
n, z ∈ D1(0). (1)

Two functions f, g ∈ A(D1(0)) we say that f is subordinated to g in D1(0) and express symbol-
ically f(z) ≺ g(z), if there exists a function ω ∈ A(D1(0)) with |ω(z)| < |z|, z ∈ D1(0) such that
f(z) = g(ω(z)) in D1(0). Furthermore, if function f is univalent in D1(0), then g is subordinate
to f provided g(0) = f(0) and g(D1(0)) ⊂ f(D1(0)). By S we denote the class of all functions
in C which are univalent in D1(0). Let S∗(ε), C(ε), K(ε), S̃∗(ε) and C̃(ε) denote the classes
of starlike, convex, close-to-convex, strongly starlike and strongly convex functions of order ε,
respectively, and are defined as

S∗(ε) =

{
f ∈ C : Re

(
zf ′(z)

f(z)

)
> ε, z ∈ D1(0), 0 ≤ ε < 1

}
,

C(ε) =

{
f ∈ C : Re

((
zf ′(z)

)′
f ′(z)

)
> ε, z ∈ D1(0), 0 ≤ ε < 1

}
,
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K(ε) =

{
f ∈ C : Re

(
zf ′(z)

g(z)

)
> ε, z ∈ D1(0), 0 ≤ ε < 1, g ∈ S∗(0) ≡ S∗

}
,

S̃∗(ε) =

{
f ∈ C :

∣∣∣∣arg(zf ′(z)f(z)

)∣∣∣∣ < επ

2
, z ∈ D1(0), 0 ≤ ε < 1

}
,

and

C̃(ε) =
{
f ∈ C :

∣∣∣∣arg(1 + zf ′′(z)

f ′(z)

)∣∣∣∣ < επ

2
, z ∈ D1(0), 0 ≤ ε < 1

}
.

For more details regarding these classes see Duren (1983); Goodman (1983).
For z ∈ C, the ℓ-Hypergeometric function is defined as

H

[
a; z
b; (c : ℓ);

]
=

∞∑
n=0

(a)n
(b)n(c)ℓnn

zn

n!
, (2)

where (γ)n = Γ(γ + n)/Γ(γ), a, ℓ ∈ C with Re(ℓ) ≥ 0 and b, c ∈ C\{0,−1,−2, · · · }. If we put
ℓ = 0 in (2), then ℓ-H function turns to well known confluent hypergeometric function,

H

[
a; z
b; (c : 0);

]
= 1F1

[
a; z
b;

]
. (3)

The ℓ-H function (2) was recently studied in Chudasama & Dev (2016).
We note that ℓ-Hypergeometric function (2) does not belong to the family C. Thus, it is

natural to consider the following normalization of ℓ-H function:

H(a; b; (c, ℓ); z) = zH

[
a; z
b; (c : ℓ);

]
= z +

∞∑
n=2

(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1

zn

(n− 1)!
.

(4)

Motivated by above works, in this paper we study certain geometric properties like κ-uniformly
convexity and κ-starlikeness of ℓ-Hypergeometric function and then we prove Alexander trans-
form of ℓ-Hypergeometric function is starlike. Let κ − UCV and κ − ST be the subclasses of
S consisting of functions which are κ-uniformly convex and κ-starlike, respectively (Kanas &
Wisniowska, 1999, 2000). They are given by,

κ− UCV =

{
f ∈ S : Re

(
1 +

zf ′′(z)

f ′(z)

)
> κ

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ,
z ∈ D1(0), κ ≥ 0

}
,

(5)

κ− ST =

{
f ∈ S : Re

(
zf ′(z)

f(z)

)
> κ

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ,
z ∈ D1(0), κ ≥ 0

}
.

(6)

The class of all functions p ∈ A(D1(0)) with p(0) = 1 satisfying the condition

Re p(z) > ε, z ∈ D1(0), ε ∈ [0, 1)

be denoted by P(ε). In particular, P(0) = P is the well-known Caratheódory class of functions
with positive real part in D1(0) (Goodman, 1983). The following lemmas are useful in the next
section.
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Lemma 1. (Owa et al., 2002) If f ∈ C satisfies the inequality

|zf ′′(z)| < 1− ε

4
, z ∈ D1(0), ε ∈ [0, 1), (7)

then,

Ref ′(z) > 1 + ε

2
, z ∈ D1(0), ε ∈ [0, 1).

Lemma 2. (Silverman, 1975) Let f ∈ C and ε ∈ [0, 1), then

(i) f ∈ S∗(ε) provided
∞∑
n=2

(n− ε)|an| ≤ 1− ε (8)

(i) f ∈ C(ε) provided
∞∑
n=2

n(n− ε)|an| ≤ 1− ε. (9)

Lemma 3. (Kanas & Wisniowska, 1999, 2000) Let f ∈ C. If for some κ ≥ 0,

∞∑
n=2

n(n− 1)|an| ≤
1

κ+ 2
(10)

and
∞∑
n=2

[n+ κ(n− 1)]|an| ≤ 1, (11)

then f ∈ κ− UCV and f ∈ κ− ST , respectively.

2 Main Results

In the sequence, convexity of order ε, close-to-convexity of order (1 + ε)/2 for normalized
ℓ-Hypergeometric function H(a; b; (c, ℓ); z) are investigated. Certain sufficient conditions for
H(a; b; (c, ℓ); z) to be in the classes P(ε),S∗(ε), C(ε), κ− UCV and κ− ST are also given.

Theorem 1. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 1 +
√
3. Then H(a; b; (c, ℓ); z) is

starlike in D1(0) i.e H(a; b; (c, ℓ); ·) ∈ S∗.

Proof. Let p(z) be the function defined by

p(z) =
zH′(a; b; (c, ℓ); z)

H(a; b; (c, ℓ); z)
, z ∈ D1(0).

Since
H(a; b; (c, ℓ); z)

z
̸= 0, the function p is analytic in D1(0) and p(0) = 1. To prove the result,

we need to show that Re(p(z)) > 0. Since c > 1 and ℓ ≥ 1, it follows that (c)n ≤ (c)ℓnn for all
n ∈ N. So, from the hypothesis,∣∣∣∣H′(a; b; (c, ℓ); z)− H(a; b; (c, ℓ); z)

z

∣∣∣∣ =
∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

zn

(n− 1)!

∣∣∣∣∣
<

∞∑
n=1

1

(c)n

=
∞∑
n=1

1

c(c+ 1)(c+ 2) · · · (c+ n− 1)

<
1

c

∞∑
n=0

1

(c+ 1)n
=
c+ 1

c2
,

(12)
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and ∣∣∣∣H(a; b; (c, ℓ); z)

z

∣∣∣∣ ≥ 1−

∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

zn

n!

∣∣∣∣∣
≥ 1−

∞∑
n=1

1

(c)n

=1−
∞∑
n=1

1

c(c+ 1)(c+ 2) · · · (c+ n− 1)

> 1− 1

c

∞∑
n=0

1

(c+ 1)n
=
c2 − c− 1

c2
.

(13)

From (12) and (13), we have∣∣∣∣zH′(a; b; (c, ℓ); z)

H(a; b; (c, ℓ); z)
− 1

∣∣∣∣ =
∣∣∣∣∣H′(a; b; (c, ℓ); z)− H(a;b;(c,ℓ);z)

z
H(a;b;(c,ℓ);z)

z

∣∣∣∣∣
<

c+ 1

c2 − c− 1
, z ∈ D1(0).

Since c ≥ 1 +
√
3, it follows that c+1

c2−c−1
≤ 1 and hence H(a; b; (c, ℓ); z) is starlike in D1(0).

Theorem 2. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ϱ(ε) =
(2− ε) +

√
5ε2 − 16ε+ 12

2(1− ε)
.

If c ≥ ϱ(ε), then H(a; b; (c, ℓ); z) is starlike function of order ε i.e H(a; b; (c, ℓ); ·) ∈ S∗(ε).

Proof. Following the proof of Theorem 1, H(a; b; (c, ℓ); z) is starlike function of order ε, if
c+ 1

c2 − c− 1
≤ 1− ε. This is true from the hypothesis. This completes the proof.

Theorem 3. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ϑ(ε) =
(8− 3ε) +

√
17ε2 − 68ε+ 76

2(1− ε)
.

If c ≥ ϑ(ε). Then H(a; b; (c, ℓ); z) is convex of order ε i.e H(a; b; (c, ℓ); ·) ∈ C(ε).

Proof. Under the hypothesis, we obtain

∣∣H′(a; b; (c, ℓ); z)
∣∣ ≤ ∣∣∣∣∣1 +

∞∑
n=1

(a)n
(b)n(c)ℓnn

(n+ 1)zn

n!

∣∣∣∣∣
≤ 1 +

∞∑
n=1

n+ 1

(c)n

= 1 +
∞∑
n=1

n

(c)n
+

∞∑
n=1

1

(c)n

≤ 1 +
1

c
+

2

c

∞∑
n=0

1

(c+ 1)n

=
c2 + 3c+ 2

c2
.

(14)
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For the reverse inequality, we have

∣∣H′(a; b; (c, ℓ); z)
∣∣ ≥ 1−

∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

(n+ 1)zn

n!

∣∣∣∣∣
≥ 1−

∞∑
n=1

n+ 1

(c)n

= 1−
∞∑
n=1

n

(c)n
−

∞∑
n=1

1

(c)n

≥ 1− 1

c
− 2

c

∞∑
n=0

1

(c+ 1)n

=
c2 − 3c− 2

c2
.

(15)

From (14) and (15), we obtained

c2 − 3c− 2

c2
≤
∣∣H′(a; b; (c, ℓ); z)

∣∣ ≤ c2 + 3c+ 2

c2
, z ∈ D1(0). (16)

From (4), we have

|zH′′(a; b; (c, ℓ); z)| =

∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

n(n+ 1)zn

n!

∣∣∣∣∣
≤

∞∑
n=1

n(n+ 1)

(c)n

≤ 4

c
+

1

c

∞∑
n=0

1

(c+ 1)n

=
5c+ 1

c2
.

(17)

Now, from (16) and (17), we get∣∣∣∣zH′′(a; b; (c, ℓ); z)

H′(a; b; (c, ℓ); z)

∣∣∣∣ ≤ 5c+ 1

c2 − 3c− 2
, z ∈ D1(0).

Since c > ϑ(ε), it follows that
5c+ 1

c2 − 3c− 2
≤ 1 − ε. Hence, H(a; b; (c, ℓ); z) is convex of order ε

in D1(0).

If we take ε = 0 in Theorem 3, then we have the following result.

Corollary 1. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 4 +
√
19. Then H(a; b; (c, ℓ); ·) ∈ C.

Theorem 4. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ρ(ε) =
10 + 2

√
26− ε

1− ε
.

If c ≥ ρ(ε). Then H(a; b; (c, ℓ); z) is close-to-convex of order
1 + ε

2
i.e H(a; b; (c, ℓ); ·) ∈ K

(
1 + ε

2

)
.

Proof. Using (17) and Lemma 1, we have

|zH′′(a; b; (c, ℓ); z)| ≤ 5c+ 1

c2
, z ∈ D1(0).
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Since c ≥ ρ(ε), it follows that
5c+ 1

c2
≤ 1− ε

4
. this proves that Re(H′(a; b; (c, ℓ); z)) >

1 + ε

2

and hence H(a; b; (c, ℓ); ·) ∈ K
(
1 + ε

2

)
.

If we take ε = 0 in Theorem 4, then we have the following result.

Corollary 2. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 10 + 2
√
26. Then H(a; b; (c, ℓ); z) is

close-to-convex of order
1

2
i.e H(a; b; (c, ℓ); ·) ∈ K

(
1

2

)
.

Theorem 5. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ψ(ε) =
1 +

√
5− 4ε

2(1− ε)
.

If c ≥ ψ(ε). Then
H(a; b; (c, ℓ); z)

z
∈ P(ε).

Proof. Let p(z) be the function defined by

p(z) =
H(a; b; (c, ℓ); z)/z − ε

(1− ε)
.

The function p(z) is analytic in D1(0) and p(0) = 1. To prove the result, we have to show that
|p(z)− 1| < 1. If z ∈ D1(0), then

|p(z)− 1| =

∣∣∣∣∣ 1

1− ε

∞∑
n=1

(a)n
(b)n(c)ℓnn

zn

n!

∣∣∣∣∣
≤ 1

1− ε

∞∑
n=1

1

(c)n

=
1

1− ε

∞∑
n=1

1

c(c+ 1)(c+ 2) · · · (c+ n− 1)

≤ 1

1− ε

1

c

∞∑
n=0

1

(c+ 1)n
=

c+ 1

c2(1− ε)
.

Since c ≥ ψ(ε), it follows that
c+ 1

c2(1− ε)
≤ 1. Hence,

H(a; b; (c, ℓ); z)

z
∈ P(ε).

If we take ε = 0 in Theorem 5, then we have the following result.

Corollary 3. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 1 +
√
5

2
. Then

H(a; b; (c, ℓ); z)

z
∈ P.

Theorem 6. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1 and ℓ ≥ 1. For 0 ≤ ε < 1,

H′(a; b; (c, ℓ); 1)− εH(a; b; (c, ℓ); 1) ≤ 2(1− ε).

Then H(a; b; (c, ℓ); z) ∈ S∗(ε).

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+
∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have

∞∑
n=2

(n− ε) |An−1| =
∞∑
n=2

nAn−1 − ε

∞∑
n=2

An−1

= (H′(a; b; (c, ℓ); z)− 1)− ε(H(a; b; (c, ℓ); z)− 1)

= H′(a; b; (c, ℓ); z)− εH(a; b; (c, ℓ); z)− 1 + ε

≤ 1− ε.
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Hence form Lemma 2, H(a; b; (c, ℓ); z) is a starlike of order ε.

Theorem 7. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1 and ℓ ≥ 1. For 0 ≤ ε < 1,

H′′(a; b; (c, ℓ); 1) + (1− ε)H′(a; b; (c, ℓ); 1) ≤ 2(1− ε).

Then H(a; b; (c, ℓ); z) ∈ C(ε).

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+

∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have
∞∑
n=2

n(n− ε) |An−1| =
∞∑
n=2

n(n− 1)An−1 + (1− ε)
∞∑
n=2

An−1

= H′′(a; b; (c, ℓ); 1) + (1− ε)(H′(a; b; (c, ℓ); 1)− 1)

= H′′(a; b; (c, ℓ); 1) + (1− ε)H′(a; b; (c, ℓ); 1)− (1− ε)

≤ 1− ε.

Hence form Lemma 2, H(a; b; (c, ℓ); z) is a convex of order ε.

Theorem 8. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1, ℓ ≥ 1 and κ ≥ 0. Then the sufficient
condition for H(a; b; (c, ℓ); z) to be in κ− ST is

H′(a; b; (c, ℓ); 1)− κ

κ+ 1
H(a; b; (c, ℓ); 1) ≤ 2

κ+ 1
.

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+
∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have
∞∑
n=2

[n+ κ(n− 1)] |An−1| = (1 + κ)

∞∑
n=2

nAn−1 − κ

∞∑
n=2

An−1

= (1 + κ)(H′(a; b; (c, ℓ); z)− 1)

− κ(H(a; b; (c, ℓ); z)− 1)

= (1 + κ)H′(a; b; (c, ℓ); z)

− κH(a; b; (c, ℓ); z)− 1

≤ 1.

Hence form Lemma 3, H(a; b; (c, ℓ); z) ∈ κ− ST .

Theorem 9. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1, ℓ ≥ 1 and κ ≥ 0. Then the sufficient
condition for H(a; b; (c, ℓ); z) to be in κ− UCV is

H′′(a; b; (c, ℓ); 1) ≤ 1

κ+ 2
.

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+

∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have
∞∑
n=2

n(n− 1) |An−1| =
∞∑
n=2

n(n− 1)An−1

= H′′(a; b; (c, ℓ); 1)

≤ 1

κ+ 2
.

Hence form Lemma 3, H(a; b; (c, ℓ); z) ∈ κ− UCV.
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For a function f ∈ C given by (1), the Alexander transform A(f) : D1(0) → C is defined by
(see Alexander (2015))

A(f)z =

∫ z

0

f(w)

w
dw = z +

∞∑
n=2

an
n
zn.

Theorem 10. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1 and ℓ ≥ 1. Then the sufficient condition for
A(H(a; b; (c, ℓ); z)) to be in the class S∗ is H(a; b; (c, ℓ); 1) ≤ 2.

Proof. From (4), we have

H(a; b; (c, ℓ); z)

z
= 1 +

∞∑
n=2

(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1

zn−1

(n− 1)!
= 1 +

∞∑
n=2

An−1z
n−1,

where

An−1 =
(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1 (n− 1)!

.

Thus,

A(H(a; b; (c, ℓ); z)) =

∫ z

0

H(a; b; (c, ℓ);w)

w
dw

= z +

∞∑
n=2

An−1
zn

n
=

∞∑
n=1

an−1z
n,

where a1 = 1, an =
An−1

n
, n ≥ 2. From Lemma 2, we have A(H(a; b; (c, ℓ); z)) ∈ S∗(0) = S∗ if,

∞∑
n=2

n|an| ≤ 1.

That is
∞∑
n=2

n|an| =
∞∑
n=2

n
An−1

n

=

∞∑
n=2

(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1 (n− 1)!

= H(a; b; (c, ℓ); 1)− 1 ≤ 1.

Which is true, since H(a; b; (c, ℓ); 1) ≤ 2. This completes the proof.
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1. Introduction

Ecology relates to the study of living beings in connection to their living styles.
Research in the area of theoretical ecology was first studied by Volterra [29] and
Lotka [23]. Later many ecologists and mathematicians contributed to the growth
of this area of knowledge as reported in [3, 7, 12, 24, 25] and references therein.
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The ecological interactions can be broadly classified as prey-predator, competition,
commensalism, ammensalism, and neutralism etc.
A two species Commensalisms is an ecological connection between two species

where one species X gain benefits while those of the other species Y neither benfit
nor harmed. Here, X may referred as the commensal species while Y the host.
Some examples are Cattle Egret, Anemonetish and Barnacles etc. The host species
Y supports the commensal species X which has a natural growth rate in spite of
a support other than from X. The commensal species X, in spite of the limitation
of its natural resources flourishes drawing strength from the host species Y. The
model is characterized by a system of first order nonlinear differential equations. In
the last decades, commensalism model studied many researchers [8, 9, 19, 20, 32].
Chen at el. [6] proposed the following two species commensal symbiosis models

with nonmonotonic functional response,

u′1(t) =u1(t)

[
a11 − b12u1(t) +

cu2(t)

d+ u22(t)

]
,

u′2(t) =u2(t) [a21 − b22u2(t)] ,

where a11, a21, b12, b22, c, d are all positive constants and showed that the system
admits a unique globally asymptotically stable positive equilibrium.
Zhao et al. [35] proposed and analyzed a commensalism model with nonmono-

tonic functional response and density-dependent birth rates,

u′1(t) =u1(t)

[
a11

a12 + a13u1(t)
− a14 − b1u1(t) +

cu2(t)

d+ u22(t)

]
,

u′2(t) =u2(t)

[
a21

a22 + a23u2(t)
− a24 − b2u2(t)

]
,

 (1)

where aij (i = 1, 2, j = 1, 2, 3, 4) and b1, c, d, and b2 are all positive constants.
Here u1(t) and u2(t) are the densities of the first and second species at time t,
respectively. a11 and a21 stand for the total resources available per unit time for
species u and v, respectively. By applying the differential inequality theory, they
showed that each equilibrium can be globally attractive under suitable conditions.
Xie et al. [33] derived sufficient conditions for the existence of positive periodic

solution of the following discrete Lotka-Volterra commensal symbiosis model

u(k + 1) =u(k) exp {a1(k)− b1(k)u(k) + c1(k)v(k)}

v(k + 1) = v(k) exp {a2(k)− b2(k)v(k)}

where {bi(k)}, i = 1, 2, {ci(k)} are all positive ω-periodic sequences, ω is a fixed
positive integer, {ai(k)}, are ω-periodic sequences such that ai =

1
ω

∑ω−1
k=0 ai(k) > 0,

i = 1, 2.
The differential, difference and dynamic equations on time scales are three equa-

tions play important role for modelling in the environment. Among them, the
theory of dynamic equations on time scales is the most recent and was introduced
by Stefan Hilger in his PhD thesis in 1988 with three main features: unification, ex-
tension and discretization. Since a time scale is any closed and nonempty subset of
the real numbers set. So, by this theory, we can extend known results from continu-
ous and discrete analysis to a more general setting. As a matter of fact, this theory
allows us to consider time scales which possess hybrid behaviours (both continuous
and discrete). These types of time scales play an important role for applications,
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since most of the phenomena in the environment are neither only discrete nor only
continuous, but they possess both behaviours. Moreover, basic results on this issue
have been well documented in the articles [1, 2] and monographs of Bohner and
Peterson [4, 5]. In the real world phenomena, since the almost periodic variation
of the environment plays a crucial role in many biological and ecological dynam-
ical systems and is more frequent and general than the periodic variation of the
environment. In this paper we systematically unify the existence of almost peri-
odic solutions of commensalism model with nonmonotic functional response and
density dependent birth rates modelled by ordinary differential equations and their
discrete analogues in the form of difference equations and to extend these results
to more general time scales. The concept of almost periodic time scales was pro-
posed by Li and Wang [13]. Based on this concept, some works have been done
(see [14–18, 21, 22, 26, 28] and references therein).
Recently, Wang [30] established a criteria for global existence of multiple periodic

solutions to the dynamic predator-prey model with delays,

u∆1 (t) = a(t)− b(t) exp{u1(t)} −
c(t) exp{2u2(t)}

m2 exp{2u2(t)}+ exp{2u1(t)}
− h(t) exp{−u1(t)},

u∆2 (t) =
f(t) exp{u1(t− τ(t)) + u2(t− τ(t))}

m2 exp{2u2(t− τ(t))}+ exp{2u1(t− τ(t))}
− d(t),

by applying continuation theorem based on Gaines and Mawhin’s coincidence de-
gree theory, and the corresponding discrete system was studied by [11].
Wang et al. [31] considered the following competitive system on time scales,

u∆1 (t) = r1(t)− a1(t) exp{u1(t)} −
b1(t) exp{u2(t)}
1 + exp{u2(t)

,

u∆2 (t) = r2(t)− a2(t) exp{u2(t)} −
b2(t) exp{u1(t)}
1 + exp{u1(t)

.

and established existence and uniformly asymptotic stability of unique positive
almost periodic solutions by time scale calculus theory and Lyapunov functional
method
Prasad et al. [27] studied the following 3-species predator-prey competition model

on time scales,

u∆1 (t) = r1(t)− exp{u1(t)} − α exp{u2(t)} − β exp{u3(t)},

u∆2 (t) = r2(t)− β exp{u1(t)} − exp{u2(t)} − α exp{u3(t)},

u∆3 (t) = r3(t)− α exp{u1(t)} − β exp{u2(t)} − exp{u3(t)},

and established sufficient conditions for the existence and uniform asymptotic sta-
bility of unique positive almost periodic solution of system.
Motivated by the aforementioned reasons in this paper we study commensalism
model with nonmonotic functional response and density dependent birth rates on
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time scales,

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}
,

ω∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{ω2(t)}
− a24(t)− b2(t) exp{ω2(t)},


(2)

where ωi(t) are the densities of the ithspecies at time t ∈ T+
(
T+ is a nonempty

closed subset of R+ = [0,+∞)
)
and ωi(0) > 0. ω∆

i express the delta derivative of
the functions ωi(t), i = 1, 2. aij(t), i = 1, 2, j = 1, 2, 3, 4 and b1(t), b2(t), c(t), d(t)
are bounded positive almost periodic functions. Clearly, if we set ui(t) =
exp{ωi}, i = 1, 2 and choose T+ = R+ the system (2) is reduced to the model
(1) and T+ = Z+ (Z+ is the set of nonnegative integer numbers), then the system
(2) is reduced to the following discrete system,

ω1(t+ 1) =ω1(t) exp

[
a11(t)

a12(t) + a13(t)ω1(t)
− a14(t)− b1(t)ω1(t) +

c(t)ω2(t)

d(t) +ω2
2(t)

]
,

ω2(t+ 1) =ω2(t) exp

[
a21(t)

a22(t) + a23(t)ω2(t)
− a24(t)− b2(t)ω2(t)

]
,

The paper is organized in the following way. In Section 2, we provide some defi-
nitions and lemmas which are useful in establishing our main results. In Section
3, we derive sufficient conditions for the permanence of system (2). The sufficient
conditions for the existence and uniform asymptotic stability of unique positive
almost periodic solution of system (2) are derived in Section 4. In final section, the
numeric simulations are given to illustrate the feasibility of the main results.

2. Preliminaries

In this section, we give some definitions and developed lemmas which are useful in
the next sections.
As we assumed almost periodic functions on T+ are bounded, we use the notations

fL = inf
{
f(t) : t ∈ T+

}
,

and

fU = sup
{
f(t) : t ∈ T+

}
,

where f(t) is an almost periodic function. We use the following notations in the
paper:

A1 =
aU11a

U
13e

κ1(
aL12 + aL13e

ℓ1
)2 , A2 =

aL11a
L
13e

ℓ1(
aU12 + aU13e

κ1

)2 ,
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B1 =
cU
(
dU − e3ℓ2

)
(dL + e2ℓ2)

2 , B2 =
cL
(
dL − e3κ2

)
(dU + e2κ2)2

,

C1 =
aU21a

U
23e

κ2(
aL22 + aL23e

ℓ2
)2 , C2 =

aL21a
L
23e

ℓ2(
aU22 + aU23e

κ2

)2 .
Definition 2.1 [5] A time scale T is a nonempty closed subset of the real numbers
R. T has the topology that it inherits from the real numbers with the standard
topology. It follows that the jump operators σ, ρ : T → T, and the graininess
µ : T → R+ are defined by

σ(t) = inf{τ ∈ T : τ > t},

ρ(t) = sup{τ ∈ T : τ < t},

and

µ(t) = ρ(t)− t,

respectively.

• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) =
t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively.

• If T has a right-scattered minimum m, then Tk = T\{m}; otherwise Tk = T.
• If T has a left-scattered maximum m, then Tk = T\{m};otherwise Tk = T.
• A function g : T → R is called rd-continuous provided it is continuous at right-

dense points in T and its left-sided limits exist (finite) at left-dense points in
T.

Definition 2.2 [5] A function f : T → R is called regressive provided 1+µ(t)f(t) ̸=
0 for all t ∈ Tk. The set of all regressive and rd-continuous functions f : T → R
will be denoted by R = R(T,R). Also, we denote the set

R+ = R+(T,R) = {f ∈ R : µ(t)f(t) > 0,∀t ∈ T}.

Lemma 2.3 [10] If a > 0, b > 0 and −b ∈ R+. Then

w∆(t) ≤ (≥)a− bw(t), w(t) > 0, t ∈ [t0,∞)T

implies

w(t) ≤ (≥)
a

b

[
1 +

(bw(t0)
a

− 1
)
e(−b)(t, t0)

]
, t ∈ [t0,∞)T.

Definition 2.4 [13] A time scale T is called an almost periodic time scale if

∏
= {κ ∈ R : t+ κ ∈ T,∀t ∈ T} ̸= {0}.
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Definition 2.5 [13] Let T be an almost periodic time scale. Then a function
w ∈ C(T,Rn) is called an almost periodic function if the ε-translation set of w i.e.,

E{ε, w} =
{
κ ∈

∏
: |w(t+ κ)− w(t)| < ε, ∀t ∈ T

}
is a relatively dense set in T for any positive real number ε.

Definition 2.6 [13] Let T be a positive almost periodic time scale. Then a function
ϕ ∈ C(T×D,Rn) is called an almost periodic function in t ∈ T uniformly for w ∈ D
if the ε-translation set of ϕ

E{ε, ϕ,S} =
{
κ ∈

∏
: |ϕ(t+ κ)− ϕ(t)| < ε, ∀(t, w) ∈ T× S

}
is a relatively dense set in T for any positive real number ε, and for each compact
subset S of D.

Next, consider the system

w∆(t) = ψ(t, w), (3)

and its associate product system

w∆(t) = ψ(t, w), z∆(t) = ψ(t, z), (4)

where ψ : T+ × SB → Rn, SB = {w ∈ Rn : ∥w∥ < B}, ψ(t, w) is almost periodic in
t uniformly for w ∈ SB and is continuous in w.

Lemma 2.7 [34] Let V(t, w, z) be Lyapunov function defined on T+ × S2B and
satisfies the following conditions

(i) α
(
∥w − z∥

)
≤ V(t, w, z) ≤ β

(
∥w − z∥

)
, where α, β ∈ P,

P =
{
γ ∈ C(R+,R+) : γ(0) = 0 and γ is increasing

}
;

(ii) |V(t, w, z)− V(t, w1, z1)| ≤ L
(
∥w − w1∥+ ∥z − z1∥

)
, where L > 0 is a constant,

(iii) D+V∆(t, w, z) ≤ −λV(t, w, z), where λ > 0,−λ ∈ R+.

Further, if there exists a solution x(t) ∈ S of system (3) for t ∈ T+, where S∪SB is
a compact set, then there exist a unique almost periodic solution f(t) ∈ S of system
(3), which is uniformly asymptotically stable.

Definition 2.8 System (2) is said to be permanent, if there exist positive constants
ℓ,κ such that

ℓ ≤ lim inf
t→+∞

ωi(t) < lim sup
t→+∞

ωi(t) ≤ κ, i = 1, 2,

for any solution
(
ω1(t),ω2(t)

)
of (2).

3. Permanence

In this section, we derive the sufficient conditions for the system (2) to be perma-
nent.
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Lemma 3.1 Suppose that

aU11 + cUaL12 >
[
aL14 + bL1

]
aL12

aU21 >
[
aL24 + bL2

]
aL22.

}
(5)

Then any positive solution
(
ω1(t),ω2(t)

)
of the dynamic system (2) satisfies

lim sup
t→+∞

ω1(t) ≤ κ1 :=
1

bL1

[
aU11
aL12

− aL14 + cU − bL1

]
and

lim sup
t→+∞

ω2(t) ≤ κ2 :=
1

bL2

[
aU21
aL22

− aL24 − bL2

]
.

Proof It follows from the first equation of the system (2) that

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}

≤ a11(t)

a12(t)
− a14(t)− b1(t) exp{ω1(t)}+ c(t)

≤ aU11
aL12

− aL14 + cU − bL1 exp{ω1(t)}

≤ aU11
aL12

− aL14 + cU − bL1
[
ω1(t) + 1

]
.

By using Lemma 2.3 we have

lim sup
t→+∞

ω1(t) ≤ κ1 :=
1

bL1

[
aU11
aL12

− aL14 + cU − bL1

]
.

Similarly from the second equation of the system (2) that

ω∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{ω2(t)}
− a24(t)− b2(t) exp{ω2(t)}

≤ a21(t)

a22(t)
− a24(t)− b2(t) exp{ω2(t)}

≤ aU21
aL22

− aL24 − bL2
[
ω2(t) + 1

]
.

From Lemma 2.3, we get

lim sup
t→+∞

ω2(t) ≤ κ2 :=
1

bL2

[
aU21
aL22

− aL24 − bL2

]
.

This completes the proof. ■
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Lemma 3.2 If the inequalities (5) and

aL11 > aU14
(
aU12 + exp{κ1}

)
aL21 > aU24

(
aU22 + exp{κ2}

)
}

(6)

hold, then any positive solution
(
ω1(t),ω2(t)

)
of system (2) satisfies

lim inf
t→+∞

ω1(t) ≥ ℓ1 := ln

[
aL11

bU1
(
aU12 + exp{κ1}

) − aU14
bU1

]
,

lim inf
t→+∞

ω2(t) ≥ ℓ2 := ln

[
aL21

bU2
(
aU22 + exp{κ2}

) − aU24
bU2

]
.

Proof From Lemma 3.1, we know that

lim sup
t→+∞

ω1(t) ≤ κ1,

which means that for any ε > 0, there exists a t0 ∈ T+ such that ω1(t) ≤ κ1 + ε
for all t ≥ t0. Then for t ≥ t0, it follows from the first equation of system (2) that

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}

≥ aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)}.

Now we claim that for t ≥ t0,

aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)} ≤ 0. (7)

By way of contradiction, assume that there exists a t̂ ≥ t0 such that

aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)} > 0

and for any t ∈ [t0, t̂)T+ ,

aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)} ≤ 0.

Then

ω1(t̂) < ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
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and for any t ∈ [t0, t̂)T+ ,

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
,

which implies ω∆
1 (t̂) < 0. It is contradiction, and hence the inequality in (7) holds

for all t ≥ t0, and

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
,

consequently

lim inf
t→+∞

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
.

Since ε is arbitrary small and from the first inequality in (6), we have

lim inf
t→+∞

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1}

) − aU14
bU1

]
.

Analogously, by the second inequality in (6), we obtain that

lim inf
t→+∞

ω2(t) ≥ ln

[
aL21

bU2
(
aU22 + exp{κ2}

) − aU24
bU2

]
.

This completes the proof. ■

Theorem 3.3 Under the assumptions (5) and (6), the system (2) is permanent.

Proof From Lemmas 3.1 and 3.2, the system (2) is permanent. ■

4. Positive almost periodic solution

In this section, we establish sufficient conditions for the existence, uniqueness and
uniform asymptotic stability of positive almost periodic solution of system (2).
Define

Λ =
{(

ω1(t),ω2(t)
)
:
(
ω1(t),ω2(t)

)
is a solution of (2)

and 0 < ℓi ≤ ωi(t) ≤ κi, i = 1, 2
}
.

It is clear that Λ is invariant set of system (2).

Theorem 4.1 Suppose that (5) and (6) are satisfied, then Λ ̸= ∅.

Proof The almost periodicity of aij(t), i = 1, 2, 3, 4; j = 1, 2 implies that there is
a sequence {θk} ⊆ T+ with θk → +∞ such that

aij(t+ θk) → aij(t), as k → +∞, i = 1, 2, 3, 4; j = 1, 2.
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From Lemma 3.1 and 3.2, for each sufficiently small ϵ > 0, there exists a τ ∈ T+

such that

ℓi − ϵ ≤ ωi(t) ≤ κi + ϵ, for all t ≥ τ, i = 1, 2.

Set ωik(t) = ωi(t + θk) for t ≥ τ − θk, k = 1, 2, · · · . For any positive integer m,
there exists a sequence {ωik(t) : k ≥ m} such that the sequence {ωik(t)} has a
subsequence, denoted by {ω∗

ik(t)}(ω∗
ik(t) = ωi(t + θ∗k)), converging on any finite

interval of T+ as k → +∞. So we have a sequence {wi(t)} such that for t ∈ T+,

ω∗
ik(t) → wk(t), as k → +∞, i = 1, 2. (8)

It is easy to see that the above sequence {θ∗k} ⊆ T+ with θ∗k → +∞ for k → +∞
such that

aij(t+ θ∗k) → aij(t), as k → +∞, i = 1, 2, 3, 4; j = 1, 2.

Which, together with (8) and

ω∗∆
1 (t) =

a11(t+ θ∗k)

a12(t+ θ∗k) + a13(t+ θ∗k) exp{ω1(t)}
− a14(t+ θ∗k)− b1(t+ θ∗k) exp{ω1(t)}

+
c(t+ θ∗k) exp{ω2(t)}

d(t+ θ∗k) + exp{2ω2(t)}
,

ω∗∆
2 (t) =

a21(t+ θ∗k)

a22(t+ θ∗k) + a23(t+ θ∗k) exp{ω2(t)}
− a24(t+ θ∗k)− b2(t+ θ∗k) exp{ω2(t)},

yields

w∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{w1(t)}
− a14(t)− b1(t) exp{w1(t)}

+
c(t) exp{w2(t)}

d(t) + exp{2w2(t)}
,

w∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{w2(t)}
− a24(t)− b2(t) exp{w2(t)},

It is clear that
(
w1(t), w2(t)

)
is a solution of system (2) and

ℓi − ϵ ≤ wi(t) ≤ κi + ϵ, for t ∈ T+, i = 1, 2.

Since ϵ was arbitrary, it follows that

ℓi ≤ wi(t) ≤ κi, for t ∈ T+, i = 1, 2.

This completes the proof. ■



K. R. Prasad et al./ IJM2C, 10 - 01 (2020) 77-94. 87

Theorem 4.2 Assume that (5), (6), Γ1 > 0 and Γ2 > 0, where

Γ1 =

[(
2bL1 e

ℓ1 + 2bL1 A2e
ℓ1 + µLbL1 e

ℓ1B2

)
−
(
2A1 + µU

(
bU1
)2
e2κ1 + µUA 2

1 + µUA1B1 + B1

)]
,

Γ2 =

[(
µLbL1 e

ℓ1B2 + 2bL2 e
ℓ2
(
1 + µLC2

))
−
(
µUB2

1 + µUA1B1 + B1 + 2C1 + µUC 2
1 + µU (bU2 )

2e2κ2
)]
,

are satisfied. Then the dynamic system (2) has a unique almost periodic solution(
ω1(t),ω2(t)

)
∈ Λ and is uniformly asymptotically stable.

Proof From Theorem 4.1 that there exists a solution
(
ω1(t),ω2(t)

)
of system (2)

such that

ℓi ≤ ωi(t) ≤ κi,

for t ∈ T+, i = 1, 2.
Define

∥
(
ω1(t),ω2(t)

)
∥ = |ω1(t)|+ |ω2(t)|,

(
ω1(t),ω2(t)

)
∈ R2

+.

Assume that W1(t) =
(
ω1(t),ω2(t)

)
, W2(t) =

(
w1(t), w2(t)

)
are any two positive

solutions of system (2), then

∥W1∥ ≤ κ1 + κ2

and

∥W2∥ ≤ κ1 + κ2.

We consider the associate product system of system (2) as follows

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}
,

ω∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{ω2(t)}
− a24(t)− b2(t) exp{ω2(t)},

w∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{w1(t)}
− a14(t)− b1(t) exp{w1(t)}

+
c(t) exp{w2(t)}

d(t) + exp{2w2(t)}
,

w∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{w2(t)}
− a24(t)− b2(t) exp{w2(t)}.



(9)
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Construct the following Lyapunov function V
(
t,W1(t),W2(t)

)
on T+ × Ω× Ω by

V
(
t,W1(t),W2(t)

)
=
(
ω1(t)− w1(t)

)2
+
(
ω2(t)− w2(t)

)2
.

It is obvious that the norm

∥W1(t)−W2(t)∥ = |ω1(t)− w1(t)|+ |ω2(t)− w2(t)|

is equivalent to

∥W1(t)−W2(t)∥∗ =
[(
ω1(t)− w1(t)

)2
+
(
ω2(t)− w2(t)

)2] 1

2 ,

in other words, there exist two constants δ1 > 0, δ2 > 0 such that

δ1∥W1(t)−W2(t)∥ ≤ ∥W1(t)−W2(t)∥∗ ≤ δ2∥W1(t)−W2(t)∥,

and hence we have

(
δ1∥W1(t)−W2(t)∥

)2 ≤ V
(
t,W1(t),W2(t)

)
≤
(
δ2∥W1(t)−W2(t)∥

)2
.

Let α, β ∈ C(R+,R+), α(ω) = δ21ω
2, β(ω) = δ22ω

2, then the assumption (i) of
Lemma 2.7 is satisfied. On the other hand, we have

∣∣∣V(t,W1(t),W2(t)
)
− V

(
t,W∗

1 (t),W∗
2 (t)

)∣∣∣
=
∣∣∣(ω1(t)− w1(t)

)2
+
(
ω2(t)− w2(t)

)2 − (ω∗
1(t)− w∗

1(t)
)2 − (ω∗

2(t)− w∗
2(t)

)2∣∣∣
≤
∣∣∣(ω1(t)− w1(t)

)
−
(
ω∗

1(t)− w∗
1(t)

)∣∣∣∣∣∣(ω1(t)− w1(t)
)
+
(
ω∗

1(t)− w∗
1(t)

)∣∣∣∣∣∣(ω2(t)− w2(t)
)
−
(
ω∗

2(t)− w∗
2(t)

)∣∣∣∣∣∣(ω2(t)− w2(t)
)
+
(
ω∗

2(t)− w∗
2(t)

)∣∣∣
≤
∣∣∣(ω1(t)− w1(t)

)
−
(
ω∗

1(t)− w∗
1(t)

)∣∣∣(|ω1(t)|+ |w1(t)|+ |ω∗
1(t)|+ |w∗

1(t)|
)

∣∣∣(ω2(t)− w2(t)
)
−
(
ω∗

2(t)− w∗
2(t)

)∣∣∣(|ω2(t)|+ |w2(t)|+ |ω∗
2(t)|+ |w∗

2(t)|
)

≤ L
(
|ω1(t)−ω∗

1(t)|+ |ω2(t)−ω∗
2(t)|+ |w1(t)− w∗

1(t)|+ |w2(t)− w∗
2(t)|

)
= L

(
∥W1(t)−W∗

1 (t)∥+ ∥W2(t)−W∗
2 (t)∥

)
,

where W∗
1 (t) =

(
ω∗

1,ω
∗
2

)
,W∗

2 (t) =
(
w∗
1, w

∗
2

)
, and L = 4max{κi, i = 1, 2}. Hence,

the assumption (ii) of Lemma 2.7 is satisfied.
Now, estimating the right derivative D+V∆ of V along with associate product
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system (9), we obtain

D+V∆
(
t,W1(t),W2(t)

)
=
(
ω1(t)− w1(t)

)∆(
ω1(t)− w1(t)

)
+ [ω1(σ(t))− w1(σ(t))]

(
ω1(t)− w1(t)

)
+
(
ω2(t)− w2(t)

)∆(
ω2(t)− w2(t)

)
+ [ω2(σ(t))− w2(σ(t))]

(
ω2(t)− w2(t)

)
=
(
ω1(t)− w1(t)

)∆(
ω1(t)− w1(t)

)
+
[(
µ(t)ω∆

1 (t) +ω1(t)
)

−
(
µ(t)w∆

1 (t) + w1(t)
)](

ω1(t)− w1(t)
)∆

+
(
ω2(t)− w2(t)

)∆(
ω2(t)− w2(t)

)
+
[(
µ(t)ω∆

2 (t) +ω2(t)
)

−
(
µ(t)w∆

2 (t) + w2(t)
)](

ω2(t)− w2(t)
)∆

=
[
2
(
ω1(t)− w1(t)

)
+ µ(t)

(
ω1(t)− w1(t)

)∆] (
ω1(t)− w1(t)

)∆
+
[
2
(
ω2(t)− w2(t)

)
+ µ(t)

(
ω2(t)− w2(t)

)∆] (
ω2(t)− w2(t)

)∆
.

So,

D+V∆
(
t,W1(t),W2(t)

)
= V1 + V2, (10)

where

V1 =
[
2
(
ω1(t)− w1(t)

)
+ µ(t)

(
ω1(t)− w1(t)

)∆] (
ω1(t)− w1(t)

)∆
,

V2 =
[
2
(
ω2(t)− w2(t)

)
+ µ(t)

(
ω2(t)− w2(t)

)∆] (
ω2(t)− w2(t)

)∆
.

From the system (9), we have

(
ω1(t)− w1(t)

)∆
= a11(t)

[
1

a12(t) + a13(t) exp{ω1(t)}
− 1

a12(t) + a13(t) exp{w1(t)}

]
− b1(t)[exp{ω1(t)} − exp{w1(t)}] + c(t)

[
exp{ω2(t)}

d(t) + exp{2ω2(t)}
− exp{w2(t)}
d(t) + exp{2w2(t)}

]
and

(
ω2(t)− w2(t)

)∆
= a21(t)

[
1

a22(t) + a23(t) exp{ω2(t)}
− 1

a22(t) + a23(t) exp{w2(t)}

]
− b2(t)[exp{ω2(t)} − exp{w2(t)}].

By mean value theorem, there exit ξi(t),ηi(t), i = 1, 2 lie between ωi(t) and wi(t),
and ξ(t) lie between ω2(t) and w2(t) such that

exp{ωi(t)} − exp{wi(t)} = exp{ξi(t)}[ωi(t)− wi(t)],

exp{ω2(t)}
d(t) + exp{2ω2(t)}

− exp{w2(t)}
d(t) + exp{2w2(t)}

=

[
d− exp{3ξ(t)}

(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)],
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1

ai2(t) + ai3(t) exp{ωi(t)}
− 1

ai2(t) + ai3(t) exp{wi(t)}

=

[
ai3(t) exp{ηi(t)}

(ai2(t) + ai3(t) exp{ηi(t)})2

]
[ωi(t)− wi(t)].

Therefore,

(
ω1(t)− w1(t)

)∆
=

[
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

− b1(t) exp{ξ1(t)}[ω1(t)− w1(t)] +

[
c(t)(d− exp{3ξ(t)})
(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)],

and

(
ω2(t)− w2(t)

)∆
=

[
a21(t)a23(t) exp{η2(t)}

(a22(t) + a23(t) exp{η2(t)})2

]
[ω2(t)− w2(t)]

− b2(t) exp{ξ2(t)}[ω2(t)− w2(t)].

Now from (10), we have

V1 =

[
2
(
ω1(t)− w1(t)

)
+ µ(t)

([
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

− b1(t) exp{ξ1(t)}[ω1(t)− w1(t)] +

[
c(t)(d− exp{3ξ(t)})
(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)]

)]
×
[ [

a11(t)a13(t) exp{η1(t)}
(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

− b1(t) exp{ξ1(t)}[ω1(t)− w1(t)] +

[
c(t)(d− exp{3ξ(t)})
(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)]

]
=

[
2

(
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2
− b1(t) exp{ξ1(t)}

)
+ µ(t)(b1(t))

2 exp{2ξ1(t)}+ µ(t)

(
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

)2

− 2b1(t)a11(t)a13(t) exp{ξ1(t) + η1(t)}
(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

2

+ µ(t)

[
c(t)(d(t)− exp{3ξ(t)})
(d(t) + exp{2ξ(t)})2

]2
[ω2(t)− w2(t)]

2

+ 2

[
µ(t)

(
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

)(
c(t)(d(t)− exp{3ξ(t)})
(d(t) + exp{2ξ(t)})2

)
+
(
1− µ(t)b1(t) exp{ξ1(t)}

)(c(t)(d(t)− exp{3ξ(t)})
(d(t) + exp{2ξ(t)})2

)]
× [ω1(t)− w1(t)][ω2(t)− w2(t)]
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≤
[
2A1 − 2bL1 e

ℓ1 + µU
(
bU1
)2
e2κ1 + µUA 2

1 − 2bL1 A2e
ℓ1
]
[ω1(t)− w1(t)]

2

+ µUB2
1 [ω2(t)− w2(t)]

2

+ 2[µUA1B1 + B1 − µLbL1 e
ℓ1B2][ω1(t)− w1(t)][ω2(t)− w2(t)]

Since 2ab ≤ a2 + b2 for any a, b ∈ R, it follows that

V1 ≤−
[(
2bL1 e

ℓ1 + 2bL1 A2e
ℓ1 + µLbL1 e

ℓ1B2

)
−
(
2A1 + µU

(
bU1
)2
e2κ1 + µUA 2

1 + µUA1B1 + B1

)]
[ω1(t)− w1(t)]

2

+
[
µLbL1 e

ℓ1B2 −
(
µUB2

1 + µUA1B1 + B1

)]
[ω2(t)− w2(t)]

2.


(11)

Similarly, we can find

V2 ≤ −
[
2bL2 e

ℓ2
(
1 + µLC2

)
−
(
2C1 + µUC 2

1 + µU (bU2 )
2e2κ2

)]
[ω2(t)− w2(t)]

2.

(12)

From (10), (11) and (12), we get

D+V∆
(
t,W1(t),W2(t)

)
= V1 + V2

= −
[(
2bL1 e

ℓ1 + 2bL1 A2e
ℓ1 + µLbL1 e

ℓ1B2

)
−
(
2A1 + µU

(
bU1
)2
e2κ1 + µUA 2

1 + µUA1B1 + B1

)]
[ω1(t)− w1(t)]

2

−
[(
µLbL1 e

ℓ1B2 + 2bL2 e
ℓ2
(
1 + µLC2

))
−
(
µUB2

1 + µUA1B1 + B1 + 2C1 + µUC 2
1 + µU (bU2 )

2e2κ2
)]
[ω2(t)− w2(t)]

2

= −Γ1[ω1(t)− w1(t)]
2 − Γ2[ω2(t)− w2(t)]

2

≤ −λV(t,W1(t),W2(t)).

where λ = min{Γi : i = 1, 2} > 0 and −λ ∈ R+. Thus, the assumption (iii) of
Lemma 2.7 is satisfied and hence, it follows from Lemma 2.7 that there exists a
unique uniformly asymptotically stable almost periodic solution

(
ω1(t),ω2(t)

)
of

dynamic system (2) and
(
ω1(t),ω2(t)

)
∈ Λ. This completes the proof. ■

5. Numerical simulations

In this section we present an example to check the validity of our main results.
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Example 5.1 Consider the following system for T+ = R+.

u′1(t) =u1(t)

[
a11(t)

a12(t) + a13(t)u1(t)
− a14(t)− b1(t)u1(t) +

c(t)u2(t)

d(t) + u22(t)

]
,

u′2(t) =u2(t)

[
a21(t)

a22(t) + a23(t)u2(t)
− a24(t)− b2(t)u2(t)

]
,

 (13)

where 
a11 a21
a12 a22
a13 a23
a14 a24

 =


50 + 0.1 sin(

√
3t) 48 + 0.1 sin(

√
5t)

15 + 0.2 sin(
√
2t) 28 + 0.1 sin(

√
3t)

0.2 + 0.1 sin(
√
5t) 120 + 0.2 sin(

√
2t)

0.03 + 0.01 sin(
√
2t) 0.002 + 0.01 sin(

√
3t)


[
b1
b2

]
=

[
1.4 + 0.1 cos(

√
2t)

1.4− 0.1 sin(
√
5t)

]
,

[
c
d

]
=

[
0.4 + 0.1 sin(

√
2t)

3.2 + 0.1 sin(
√
3t)

]
.

By calculating, we get

57.5 = aU11 + cUaL12 > 19.536 =
[
aL14 + bL1

]
aL12,

48.1 = aU21 > 36.0468 =
[
aL24 + bL2

]
aL22,

which shows that (5) holds and κ1 = 1.973180873,κ2 = 0.3323187208. Now we
check (6),

49.9 = aL11 > 0.8957408724 = aU14
(
aU12 + exp{κ1}

)
,

47.9 = aL21 > 0.3539303657 = aU24
(
aU22 + exp{κ2}

)
.

So, ℓ1 = 0.3776703951, ℓ2 = 0.07204048280. From these values we obtain,

A1 = 0.4840130676, A2 = 0.02416120093, B1 = 0.05685627445,

B2 = 0.04254742499, C1 = 0.3284875457, C2 = 0.1610553506.

By above values (note that for T = R, µ(t) = 0), we get

Γ1 = 2.859856503, Γ2 = 2.080385645.

λ = min{Γi : i = 1, 2} > 0 and −λ ∈ R+. From Fig. 1-3, it is easy to see
that for system (13) there exists a positive almost periodic solution denoted by(
ω∗

1(t),ω
∗
2(t)
)
. Moreover, Fig. 4-5 shows that any positive solution

(
ω1(t),ω2(t)

)
tends to the above almost periodic solution

(
ω∗

1(t),ω
∗
2(t)
)
.
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Abstract. In this paper, we study a non-autonomous time-delayed SIR epidemic model which
involves almost periodic incidence rate and saturated treatment function on time scales. By
utilizing some dynamic inequalities on time scales, sufficient conditions are derived for the per-
manence of the SIR epidemic model and we also obtain the existence and uniform asymptotic
stability of almost periodic positive solutions for the addressed SIR model by Lyapunov func-
tional method. Finally numerical simulations are given to demonstrate our theoretical results.
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1 Introduction

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses, fungi
and parasites. The diseases can spread directly or indirectly from one person to another or
from birds or animals to humans and these diseases are a leading cause of death. Despite all the
advancement in medicines, infectious disease outbreaks still constitute a significant threat to the
public health and economy. Mathematical modeling has become a valuable tool to understand
the dynamics of infectious disease and to support the development of control strategies and
studied by many researchers [11,16,17] and references therein.

The differential, difference and dynamic equations on time scales are three equations play
important role for modelling in the environment.Among them, the theory of dynamic equations
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on time scales is the most recent and was introduced by Hilger in his PhD thesis in 1988 [7]
with three main features: unification, extension and discretization. Since a time scale is any
closed and nonempty subset of the real numbers set. So, by this theory, we can extend known
results from continuous and discrete analysis to a more general setting. As a matter of fact, this
theory allows us to consider time scales which possess hybrid behaviours (both continuous and
discrete). These types of time scales play an important role for applications, since most of the
phenomena in the environment are neither only discrete nor only continuous, but they possess
both behaviours Hence, dynamic equations on a time scale have a potential for applications. In
the population dynamics, the insect population can be better modelled using time scale calculus.
The reason is that they evolve continuously while in season, die out in winter while their eggs
are incubating or dormant, and then hatch in a new season, giving rise to a non-overlapping
population. Some of the good contributions in this field can be found in [1–3,14,15].

In 2016, Bohner and Streipert [4] considered the SIS model,

S∆(t) = I(t)
[
− βS(σ(t)) + γ

]
, S(t) > 0,

I∆(t) = I(t)
[
βS(σ(t))− γ

]
, I(t) ≥ 0,

where β > 0, γ > 0 are the transmission and recovery rates of the disease and σ(t) denotes the
forward jump operator and discussed the stability of the steady states of the model. In [5],
Bohner, Streipert and Torres derived exact solution of non-autonomous SIR epidemic model,

x∆(t) =− b(t)x(t)y(σ(t))

x(t) + y(t)

y∆(t) =
b(t)x(t)y(σ(t))

x(t) + y(t)
− c(t)y(σ(t))

z∆(t) =c(t)z(σ(t)), x(t), y(t) > 0,

and then analyzed the stability of the solutions to corresponding autonomous model. In the real
world phenomena, since the almost periodic variation of the environment plays a crucial role in
many biological and ecological dynamical systems and is more frequent and general than the
periodic variation of the environment. The concept of almost periodic time scales was proposed
by Li and Wang [10]. Based on this concept, some works have been done [12–15].

Recently, Bohner and Streipert [6] analysed the existence and globally asymptotic stability
of a ω-periodic solution to the discrete SIS model,

∆St = −βtSt+1It + γtIt,

∆It = βtSt+1It − γtIt.

Motivated by aforementioned works and mainly [9, 18], in this paper we study the following
time-delayed SIR model on time scales.

2 Model description and preliminaries

In this section, we consider an SIR model with saturated and periodic incidence rate and satu-
rated treatment function, whose corresponding continuous (R) model has been studied in [9,18].
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The population is divided into three classes: the susceptible class S, the infectious class I, and the
recovered class R. The transition dynamics associated with these subpopulations are illustrated
in Fig. 1.

Based on the above discussion, we make the following assumptions:

(1) The infection is transmitted to humans by a vector, i.e., susceptible persons receive the in-
fection from infectious vectors, and susceptible vectors receive the infection from infectious
persons.

(2) When a susceptible vector is infected by a human, there is a fixed time τ during which the
infectious agents develop in the vector, and it is after that time that the infected vector
can infect the susceptible human population.

(3) The number of newly infected individuals per time unit is proportional to S(t)u(t)/
(
1 +

a(t)u(t)
)
, where u(t) the number of infectious vectors in the community at time t, and

(1 + a(t)u(t))−1 represents the saturation effect when the population of infectious vectors
is large.

(4) The total vector population is very large and u(t) is proportional to I(t− τ).

Using above assumptions, we propose the delayed susceptible-infected-recovered (SIR) model
with saturated treatment on time scales by

S∆(t) =A(t)− α(t)S(t)− χ(t)S(t)I(t− τ)

1 + a(t)I(t− τ)
,

I∆(t) =
χ(t)S(t)I(t− τ)

1 + a(t)I(t− τ)
− [α(t) + β(t) + γ(t)]I(t)− b(t)I(t)

1 + c(t)I(t)
,

R∆(t) = γ(t)I(t) +
b(t)I(t)

1 + c(t)I(t)
− α(t)R(t),


(1)

where t ∈ T(time scale). Motivated by biological realism, we take the contact rate as χ(t) =
d+δ sin(π/6)t, (for more details refer [9]) and all other parameters are positive. While contacting
with infected individuals, the susceptible individuals become infected at a saturated incidence
rate χSI

1+aI . Through treatment, the infected individuals recover at a saturated treatment function
bI

1+cI . The interpretation and values of parameters are described in the Table 1.

Remark 1. In order to unify the existence of almost periodic solutions for SIR model with
saturated and periodic incidence rate and saturated treatment function modelled by ordinary dif-
ferential equations and their discrete analogues in the form of difference equations, combination
of both continuous and discrete and to extend these results to more general time scales, we re-
quired much developed theory on time scales. Therefore, the qualitative study of (1) on time
scales is challenging one.

Let C = C([−τ, 0]T,R3) denote the Banach space and assume that the initial conditions of
(1) satisfy

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ),
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Table 1: Descriptions and values of parameters in model (1).

Parameter Parameter description

A The recruitment rate of the population
a, b, c The auxiliary parameters
α The natural mortality rate
d The baseline contact rate
δ The magnitude of forcing
γ The natural recovery rate of the infective
β The disease-related death rate

Figure 1: The transmission diagram.

ϕi(θ) ≥ 0, θ ∈ [−τ, 0], ϕi(0) > 0, i = 1, 2, 3,

where (ϕ1, ϕ2, ϕ3) ∈ C. For a function f(t) defined on T, we denote

fL = inf
{
f(t) : t ∈ T

}
, fU = sup

{
f(t) : t ∈ T

}
.

Throughout the paper we suppose the following hold:

(H1) A, a, b, c, α, β, γ : T→ [0,∞] are bounded almost periodic functions and satisfy 0 < AL ≤
A(t) ≤ AU , 0 < aL ≤ a(t) ≤ aU , 0 < bL ≤ b(t) ≤ bU , 0 < cL ≤ c(t) ≤ cU , 0 < αL ≤ α(t) ≤
αU , 0 < βL ≤ β(t) ≤ βU , 0 < γL ≤ γ(t) ≤ γU .

Next, we provide some definitions and lemmas which will be useful for later discussions.

Definition 1. [2] A time scale T is a nonempty closed subset of the real numbers R. T has
the topology that it inherits from the real numbers with the standard topology. It follows that the
jump operators σ, ρ : T→ T, and the graininess µ : T→ R+ are defined by

σ(t) = inf{ξ ∈ T : ξ > t}, ρ(t) = sup{ξ ∈ T : ξ < t}, and µ(t) = ρ(t)− t,

respectively.
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• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t,
σ(t) = t, σ(t) > t, respectively.

• A function g : T→ R is called rd-continuous provided it is continuous at right-dense points in
T and its left-sided limits exist (finite) at left-dense points in T.

Definition 2. [2] A function f : T → R is called regressive provided 1 + µ(t)f(t) 6= 0 for all
t ∈ Tk. The set of all regressive and rd-continuous functions f : T → R will be denoted by
R = R(T,R). Also, we denote the set

R+ = R+(T,R) = {f ∈ R : 1 + µ(t)f(t) > 0,∀t ∈ T}.

Lemma 1. [8] If a > 0, b > 0 and −b ∈ R+. Then

u∆(t) ≤ (≥)a− b u(t), u(t) > 0, t ∈ [t0,∞)T,

implies

u(t) ≤ (≥)
a

b

[
1 +

(b u(t0)

a
− 1
)
e(−b)(t, t0)

]
, t ∈ [t0,∞)T.

Definition 3. [10] A time scale T is called an almost periodic time scale if∏
= {ξ ∈ R : t+ ξ ∈ T,∀t ∈ T} 6= {0}.

Definition 4. [10] Let T be an almost periodic time scale. Then a function u ∈ C(T,Rn) is
called an almost periodic function if the ε-translation set of w i.e.,

E{ε, u} =
{
ξ ∈

∏
: |u(t+ ξ)− u(t)| < ε,∀t ∈ T

}
,

is a relatively dense set in T for any positive real number ε.

Definition 5. [10] Let D be an open set of Rn and T be a positive almost periodic time scale.
Then a function φ ∈ C(T × D,Rn) is called an almost periodic function in t ∈ T uniformly for
w ∈ D if the ε-translation set of φ

E{ε, φ,S} =
{
ξ ∈

∏
: |φ(t+ ξ, u)− φ(t, u)| < ε,∀(t, u) ∈ T× S

}
,

is a relatively dense set in T for any positive real number ε, and for each compact subset S of D.
that is, for any given ε > 0 and each compact subset S of D, there exists a constant l(ε, S) > 0
such that each interval of length l(ε, S) contains a ξ(ε,S) ∈ E{ε, φ,S} such that

|φ(t+ ξ, u)− φ(t, u)| < ε, ∀(t, u) ∈ T× S.

Next, consider the system
$∆(t) = g(t,$), t ∈ T+, (2)

where g : T × SM → R, SM = {$ ∈ Rn : ‖$‖ < M}, ‖$‖ = supt∈T |$(t)|, g(t,$) is almost
periodic in t uniformly for $ ∈ SM and is continuous in $. To find the solution of the (2), we
consider the product system of (2) as follows:

$∆(t) = g(t,$), ϑ∆(t) = g(t, ϑ),

and we have the following lemma.
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Lemma 2. Let V(t,$, ϑ) be Lyapunov function defined on T+×SM×SM and satisfies the following
conditions

(i) A
(
‖$ − ϑ‖

)
≤ V(t,$, ϑ) ≤ B

(
‖$ − ϑ‖

)
, where A, B ∈ P,

P =
{
G ∈ C(R+,R+) : G(0) = 0 and G is increasing

}
;

(ii) |V(t,$, ϑ)− V(t,$1, ϑ1)| ≤ L
(
‖$ −$1‖+ ‖ϑ− ϑ1‖

)
, where L > 0 is a constant;

(iii) D+V∆(t,$, ϑ) ≤ −λV(t,$, ϑ), where λ > 0,−λ ∈ R+.

Further, if there exists a solution $(t) ∈ S of system (2) for t ∈ T+, where S ⊂ SM is a compact
set, then there exist a unique almost periodic solution p(t) ∈ S of system (2), which is uniformly
asymptotically stable. Also, if g(t,$) is periodic in t uniformly for $ ∈ SM, then p(t) is also
periodic.

Proof. Let {`n} be a sequence in
∏

such that `n → +∞ as n→ +∞. Suppose that ψ ∈ S is a
solution of (2) for t ∈ T+, then ψ(t+ `n) ∈ S is a solution of the equation $∆(t) = g(t,$). Let
U be a compact subset of T. Then, for any ε > 0, there exists large enough integer N(ε) such that

e(−λ)(`k, 0) <
A(ε)

2B(2M)
,
∥∥g(t+ `k, $)− g(t+ `m, $)

∥∥ < λA(ε)

2L
,

whenever m ≥ k ≥ N(ε). Then from (ii) and (iii), we have

D+V∆
(
t, ψ(t), ψ(t+ `m − `k)

)
≤ −λV

(
t, ψ(t), ψ(t+ `m − `k)

)
+L
∥∥g(t+ `m − `k, ψ(t+ `m − `k)

)
− g
(
t, ψ(t+ `m − `k)

)∥∥
≤ −λV

(
t, ψ(t), ψ(t+ `m − `k)

)
+

λA(ε)

2
.

Next for m ≥ k ≥ N(ε), t ∈ U and from Lemma 1, we have

V
(
t+ `k, ψ(t+ `k), ψ(t+ `m)

)
≤ e(−λ)(t+ `k, 0)V

(
0, ψ(0), ψ(`m − `k))

)
+
A(ε)

2

(
1− e(−λ)(t+ `k, 0)

)
≤ e(−λ)(t+ `k, 0)V

(
0, ψ(0), ψ(`m − `k))

)
+

A(ε)

2

<
A(ε)

2B(2M)
B(2M) +

A(ε)

2
= A(ε).

By (i), for m ≥ k ≥ N(ε) and t ∈ U, we get ‖ψ(t+ `m)− ψ(t+ `k)‖ < ε, which shows that ψ(t)
is asymptotically almost periodic. Then, ψ(t) can be written as ψ(t) = p(t) + r(t), where p(t)
is almost periodic and r(t) → 0 as t → 0. Thus, p(t) ∈ S is an almost periodic solution of (2).
Further, it can be proved easily that p(t) is uniformly asymptotically stable and every solution
in SM tends to p(t), which means p(t) is unique. Moreover, if g(t,$) is ω-periodic in t uniformly
for $ ∈ SM, p(t + ω) ∈ S is also a solution. By the uniqueness, we have p(t + ω) = p(t). This
completes the proof.
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3 Permanence of solutions

In this section, we derive sufficient conditions for system (1) to be permanent.

Definition 6. System (1) is said to be permanent if there are positive constants k,K such that

k ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤ K, k ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ K,

k ≤ lim inf
t→∞

R(t) ≤ lim sup
t→∞

R(t) ≤ K,

for any solution (S(t), I(t), R(t)) of system (1).

Lemma 3. Assume that (S(t), I(t), R(t)) be a positive solution of system (1). If −αL, −(αL +
βL+γL) ∈ R+, there exist T3 > 0 and K > 0 such that S(t) ≤ K, I(t) ≤ K, R(t) ≤ K for t ∈
[T3,∞)T.

Proof. Assume that (S(t), I(t), R(t)) be any positive solution of system (1). It follows from the
first equation of system (1) that

S∆(t) ≤A(t)− α(t)S(t) ≤ AU − αLS(t).

Therefore, by Lemma 1, for arbitrary small ε > 0, there exists a T1 > 0 such that

S(t) ≤ AU

αL
+ ε := K1, t ∈ [T1,∞)T. (3)

Next, from the second equation of system (1) and (3), for t ∈ [T1,∞),

I∆(t) ≤ χ(t)S(t)I(t− τ)

1 + a(t)I(t− τ)
− [α(t) + β(t) + γ(t)]I(t)

≤ χ(t)S(t)

a(t)
− [α(t) + β(t) + γ(t)]I(t) ≤ χUK1

aL
− [αL + βL + γL]I(t).

By Lemma 1, for arbitrary small ε > 0, there exists a T2 > T1 such that

I(t) ≤ χUK1

aL(αL + βL + γL)
+ ε := K2, t ∈ [T2,∞)T. (4)

Finally, from the last equation of system (1) and (4), for t ∈ [T2,∞],

R∆(t) = γ(t)I(t) +
b(t)I(t)

1 + c(t)I(t)
− α(t)R(t)

≤ γ(t)I(t) +
b(t)

c(t)
− α(t)R(t) ≤

[
γUK2 +

bU

cL

]
− αLR(t)

By Lemma 1, for arbitrary small ε > 0, there exists a T3 > T2 such that

R(t) ≤ cLγUK2 + bU

cLαL
+ ε := K3, t ∈ [T3,∞).

Let K > max{K1,K2,K3}, then

S(t) ≤ K, I(t) ≤ K, R(t) ≤ K for t ∈ [T3,∞)T.

This completes the proof.
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Lemma 4. Assume that (S(t), I(t), R(t)) be a positive solution of system (1). If

ALcL > bU ,
ALcL − bU

cL(αU + βU + γU )
> K,

and −αU , −(αU + βU + γU ) ∈ R+, then there exist T6 > 0 and k > 0 such that

S(t) ≥ k, I(t) ≥ k, R(t) ≥ k for t ∈ [T6,∞)T.

Proof. Assume that (S(t), I(t), R(t)) be any positive solution of system (1). It follows from the
first equation of system (1) and Lemma 3 that, for t ∈ [T3,∞),

S∆(t) ≥ AL − αUS(t)− χUKS(t)

1 + aLK
≥ AL −

[αU + (αUaL + χU )K

1 + aLK

]
S(t).

Therefore, by Lemma 1, for arbitrary small ε > 0, there exists a T4 > 0 such that

S(t) ≥ AL(1 + aLK)

αU + (αUaL + χU )K
+ ε := k1, t ∈ [T4,∞)T. (5)

Next, define P (t) = S(t) + I(t), t ∈ [T4,∞)T, and calculating the delta derivative of P (t) along
the solutions of (1), we have

P∆(t) =A(t)− α(t)S(t)− [α(t) + β(t) + γ(t)]I(t)− b(t)I(t)

1 + c(t)I(t)

≥A(t)− [α(t) + β(t) + γ(t)]S(t)− [α(t) + β(t) + γ(t)]I(t)− b(t)I(t)

1 + c(t)I(t)

≥A(t)− [α(t) + β(t) + γ(t)](I(t) + S(t))− b(t)

c(t)

≥
[ALcL − bU

cL

]
− [αU + βU + γU ]P (t).

(6)

By Lemma 1, for arbitrary small ε > 0, there exists a T5 > T4, it follows from (6) that, for
t ∈ [T5,∞),

P (t) ≥ ALcL − bU

cL(αU + βU + γU )
+ ε.

From the definition of P (t) and Lemma 3, it follows that

I(t) ≥ ALcL − bU

cL(αU + βU + γU )
−K + ε := k2. (7)

By the third equation of the system (1), Lemma 3 and (7), for t ∈ [T5,∞), we have

R∆(t) ≥
[
γLk2 +

bLk2

1 + cUK

]
− αUR(t). (8)

By Lemma 1, for arbitrary small ε > 0, there exists a T6 > T5, it follows from (8) that, for
t ∈ [T6,∞),

R(t) ≥ [γL(1 + cUK) + bL]k2

αU (1 + cUK)
+ ε := k3.

Let 0 < k < min{k1, k2, k3}, then S(t) ≥ k, I(t) ≥ k, R(t) ≥ k for t ∈ [T6,∞)T.
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Theorem 1. Assume that the conditions of Lemma 3 and Lemma 4 hold, then system (1) is
permanent.

Proof. Together with Lemma 3 and 4, we can obtain desired result.

Define
Ω =

{(
S(t), I(t), R(t)

)
:
(
S(t), I(t), R(t)

)
be a solution of (1) and

0 < s∗ ≤ S(t) ≤ s∗, 0 < i∗ ≤ I(t) ≤ i∗, 0 < r∗ ≤ R(t) ≤ r∗
}
.

It is clear that Ω is invariant set of system (1).

Lemma 5. If hypothesis of Lemmas 3 and 4 holds. Then Ω 6= ∅.
Proof. It can be easily proved. So, we omit it here.

4 Uniform asymptotic stability

In this section, we establish sufficient conditions for the existence and uniform asymptotic sta-
bility of the unique positive almost periodic solution to system (1).

Theorem 2. If (H1) and the following holds:

(H2) η > 0 and −η ∈ R+, where η = min{η1, η2, α
L} where

η1 =αL +
aLχLi2∗ + χLi∗

(1 + aU i∗)2
− aUχU i∗2 + χU i∗

(1 + aLi∗)2
,

η2 = (αL + βL + γL) +
bL

(1 + cU i∗)2
+

χLs∗
(1 + aU i∗)2

− bU

(1 + cLi∗)2
− χUs∗

(1 + aLi∗)2
− γU

then the dynamic system (1) has a unique almost periodic solution
(
S(t), I(t), R(t)

)
∈ Ω and is

uniformly asymptotically stable.

Proof. According to Theorem 1 and Lemma 5, every solution
(
S(t), I(t), R(t)

)
of system (1)

satisfies s∗ ≤ S(t) ≤ s∗, i∗ ≤ I(t) ≤ i∗, r∗ ≤ R(t) ≤ r∗. Hence, |S(t)| ≤ Ai, |I(t)| ≤ Bi, |R(t)| ≤
Ci where Ai = max{|s∗|, |s∗|}, Bi = max{|i∗|, |i∗|} and and Ci = max{|r∗|, |r∗|}.

Denote ‖
(
S(t), I(t), R(t)

)
‖ = sup

t∈T+

|S(t)|+ sup
t∈T+

|I(t)|+ sup
t∈T+

|R(t)|.

Suppose that X =
(
S(t), I(t), R(t)

)
, X̂ =

(
Ŝ(t), Î(t), R̂(t)

)
are any two positive solutions of

system (1), then
‖X‖ ≤ A+B + C and ‖X̂‖ ≤ A+B + C.

In view of system (1), we have

Ŝ∆(t) =A(t)− α(t)Ŝ(t)− χ(t)Ŝ(t)Î(t− τ)

1 + a(t)Î(t− τ)
,

Î∆(t) =
χ(t)Ŝ(t)Î(t− τ)

1 + a(t)Î(t− τ)
− [α(t) + β(t) + γ(t)]Î(t)− b(t)Î(t)

1 + c(t)Î(t)
,

R̂∆(t) = γ(t)Î(t) +
b(t)Î(t)

1 + c(t)Î(t)
− α(t)R̂(t).


(9)
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Define the Lyapunov function V(t,X, X̂) on T+ × Ω× Ω as

V(t,X, X̂) = |S(t)− Ŝ(t)|+ |I(t)− Î(t)|+ |R(t)− R̂(t)|.

Define the norm

‖X(t)− X̂(t)‖ = sup
t∈T+

|S(t)− Ŝ(t)|+ sup
t∈T+

|I(t)− Î(t)|+ sup
t∈T+

|R(t)− R̂(t)|.

It is easy to see that there exist two constants l > 0, m > 0 such that

l‖X(t)− X̂(t)‖ ≤ V (t,X, X̂) ≤ m‖X(t)− X̂(t)‖.

Let A, B ∈ C(R+,R+), A(x) = lx, B(x) = mx, then the assumption (i) of Lemma 2 is satisfied.
On the other hand, we have∣∣V(t,X(t), X̂(t)

)
− V

(
t,X∗(t), X̂∗(t)

)∣∣ =
∣∣|S(t)− Ŝ(t)|+ |I(t)− Î(t)|+ |R(t)− R̂(t)|
−|S∗(t)− Ŝ∗(t)| − |I∗(t)− Î∗(t)| − |R∗(t)− R̂∗(t)|

∣∣
≤
∣∣S(t)− S∗(t)

∣∣+
∣∣I(t)− I∗(t)

∣∣+
∣∣R(t)−R∗(t)

∣∣
+
∣∣Ŝ(t)− Ŝ∗(t)

∣∣+
∣∣Î(t)− Î∗(t)

∣∣+ +
∣∣R̂(t)− R̂∗(t)

∣∣
= L

[
‖X −X∗(t)‖+ ‖X̂(t)− X̂∗(t)‖

]
,

where L = 1, so condition (ii) of Lemma 2 is satisfied. Now consider a function W(t) =
W1(t) +W2(t) +W3(t), where

W1(t) = |S(t)− Ŝ(t)|, W2(t) = |I(t)− Î(t)|,

and

W3(t) = |R(t)− R̂(t)|+
[

χUs∗

(1 + aLi∗)2
− χLs∗

(1 + aU i∗)2

] ∫ t

t−τ
|I(t)− Î(t)|∆t.

For t ∈ T+, calculating the delta derivative D+W1(t)∆ of W1(t) along system (9), we get

D+W∆
1 (t) ≤ sign

(
S(σ(t))− Ŝ(σ(t))

)[
S(t)− Ŝ(t)

]∆
≤ sign

(
S(σ(t))− Ŝ(σ(t))

)[
− α(t)

(
S(t)− Ŝ(t)

)
− χ(t)S(t)I(t− τ)

1 + a(t)I(t− τ)

+
χ(t)Ŝ(t)Î(t− τ)

1 + a(t)Î(t− τ)

]
≤ sign

(
S(σ(t))− Ŝ(σ(t))

)[
− α(t)

(
S(t)− Ŝ(t)

)
− (a(t)χ(t)I(t− τ)Î(t− τ) + χ(t)Î(t− τ))

(1 + a(t)I(t− τ))(1 + a(t)Î(t− τ))

(
S(t)− Ŝ(t)

)
− χ(t)S(t)

(1 + a(t)I(t− τ))(1 + a(t)Î(t− τ))

(
I(t− τ)− Î(t− τ)

)]
≤ −

[
αL +

aLχLi2∗ + χLi∗
(1 + aU i∗)2

]∣∣S(t)− Ŝ(t)
∣∣− χLs∗

(1 + aU i∗)2

∣∣I(t− τ)− Î(t− τ)
∣∣.
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Similarly,

D+W∆
2 (t) ≤ sign

(
I(σ(t))− Î(σ(t))

)[
I(t)− Î(t)

]∆
≤ sign

(
I(σ(t))− Î(σ(t))

)[χ(t)S(t)I(t− τ)

1 + a(t)I(t− τ)
− χ(t)Ŝ(t)Î(t− τ)

1 + a(t)Î(t− τ)

−
(
α(t) + β(t) + γ(t)

)(
I(t)− Î(t)

)
− b(t)I(t)

1 + c(t)I(t)
+

b(t)Î(t)

1 + c(t)Î(t)

]
≤ sign

(
I(σ(t))− Î(σ(t))

)[(a(t)χ(t)I(t− τ)Î(t− τ) + χ(t)Î(t− τ))

(1 + a(t)I(t− τ))(1 + a(t)Î(t− τ))

(
S(t)− Ŝ(t)

)
+

χ(t)S(t)
(
I(t− τ)− Î(t− τ)

)
(1 + a(t)I(t− τ))(1 + a(t)Î(t− τ))

−
(
α(t) + β(t) + γ(t)

)(
I(t)− Î(t)

)
− b(t)

(1 + c(t)I(t))(1 + c(t)Î(t))

(
I(t)− Î(t)

)]
≤
[
aUχU i∗2 + χU i∗

(1 + aLi∗)2

]∣∣S(t)− Ŝ(t)
∣∣+

χUs∗

(1 + aLi∗)2

∣∣I(t− τ)− Î(t− τ)
∣∣

−
[
(αL + βL + γL) +

bL

(1 + cU i∗)2

]∣∣I(t)− Î(t)
∣∣,

and

D+W∆
3 (t) ≤ sign

(
R(σ(t))− R̂(σ(t))

)[
R(t)− R̂(t)

]∆
+

[
χUs∗

(1 + aLi∗)2
− χLs∗

(1 + aU i∗)2

] [
|I(t)− Î(t)| − |I(t− τ)− Î(t− τ)|

]
≤ sign

(
R(σ(t))− R̂(σ(t))

)[
γ(t)

(
I(t)− Î(t)

)
+

b(t)I(t)

1 + c(t)I(t)
− b(t)Î(t)

1 + c(t)Î(t)
− α(t)

(
R(t)− R̂(t)

)]
≤
[
γU +

bU

(1 + cLi∗)2
+

χUs∗

(1 + aLi∗)2
− χLs∗

(1 + aU i∗)2

]∣∣I(t)− Î(t)
∣∣

−
[

χUs∗

(1 + aLi∗)2
− χLs∗

(1 + aU i∗)2

] ∣∣I(t− τ)− Î(t− τ)
∣∣− αL∣∣R(t)− R̂(t)

∣∣.
Since V(t) ≤ W(t) for t ∈ T+ and by assumption (H2), it follows that

D+
(
V(t)

)∆ ≤ D+
(
W(t)

)∆
= D+

(
V1(t) + V2(t) + V3(t)

)∆
≤ −

[
αL +

aLχLi2∗ + χLi∗
(1 + aU i∗)2

− aUχU i∗2 + χU i∗

(1 + aLi∗)2

]∣∣S(t)− Ŝ(t)
∣∣

−
[
(αL + βL + γL) +

bL

(1 + cU i∗)2
+

χLs∗
(1 + aU i∗)2

− bU

(1 + cLi∗)2
− χUs∗

(1 + aLi∗)2
− γU

]∣∣I(t)− Î(t)
∣∣− αL∣∣R(t)− R̂(t)

∣∣
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≤ −η1

∣∣S(t)− Ŝ(t)
∣∣− η2

∣∣I(t)− Î(t)
∣∣− αL∣∣R(t)− R̂(t)

∣∣
≤ −ηV (t).

By (H2), we see that Condition (iii) of Lemma 2 is satisfied. Hence, according to Lemma 2,
there exists a unique uniformly asymptotically stable almost periodic solution

(
S(t), I(t), R(t)

)
of system (1) and

(
S(t), I(t), R(t)

)
∈ Ω. The proof is complete.

5 Numerical Simulations

In this section we provide some numerical simulations to illustrate the results obtained in the
previous sections.

Example 1. Consider the dynamic susceptible-infected-recovered (SIR) model with saturated
treatment on time scale T+ :

S∆(t) =A(t)− α(t)S(t)− χ(t)S(t)I(t− 0.004)

1 + a(t)I(t− 0.004)
,

I∆(t) =
χ(t)S(t)I(t− 0.004)

1 + a(t)I(t− 0.004)
− [α(t) + β(t) + γ(t)]I(t)− b(t)I(t)

1 + c(t)I(t)
,

R∆(t) = γ(t)I(t) +
b(t)I(t)

1 + c(t)I(t)
− α(t)R(t),


(10)

where A(t) = 0.5 + | sin
√

2t|, α = 5 + | cos
√

5t|, β = 0.1, γ = 0.02 + | sinπt|, a(t) = 0.5,
b(t) = 0.1, c(t) = 0.05, χ(t) = 2× 10−3 + 2× 10−4 sin((π/6)t). By direct calculations, we obtain
s∗ = 0.3, i∗ = 0.0004327868853, r∗ = 0.1715168599, and s∗ = 0.3446911567, i∗ = 0.6900990099,
r∗ = 0.01363200507. Let K = 0.4. Then K > max{s∗, i∗, r∗} = 0.3, ALcL − bU = 0.25 > 0 and

ALcL − bU

cL(αU + βU + γU )
= 0.9900990099 > K.

Therefore, by Theorem 1, (10) is permanent.
Now by these values, we get η1 = 5.001855105, η2 = 4.106533372. S0, η = min{η1, η2, α

L} =
η2 > 0. By Theorem 2, (10) has a unique almost periodic solution

(
S(t), I(t), R(t)

)
∈ Ω and

is uniformly asymptotically stable. From Fig. 2-5, we can see that for system (10), there
exists a positive almost periodic solution denoted by

(
S∗(t), I∗(t), R∗(t)

)
. Moreover, Fig. 6-8

shows that any positive solution
(
S(t), I(t), R(t)

)
tends to the above almost periodic solution(

S∗(t), I∗(t), R∗(t)
)
.

In addition, from Fig. 1-8 when the initial conditions are different, the disease will tend
toward different periodic solutions. So, besides related control measures, we can change the
initial condition to change the tendency of the disease.

6 Conclusion

In the real nature, due to the interference of various factors, such as seasonal effects of the
weather, food supplies, and mating habits, the coefficients of most of the systems are approx-
imate to certain periodic functions. However, with the uncertainty of the interferences, the
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Figure 2: Positive almost periodic solution of system (10). Time series of S(t) with initial value
S(0) = 0.12 and t over [0, 50].

Figure 3: Positive almost periodic solution of system (10). Time series of I(t) with initial value
I(0) = 0.00028 and t over [0, 50].

Figure 4: Positive almost periodic solution of system (10). Time series of R(t) with initial value
R(0) = 0.0034 and t over [0, 50].
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Figure 5: Positive almost periodic solution of system (10). Time series of
(
S(t), I(t), R(t)

)
with

initial value
(
S(0), I(0), R(0)

)
= (0.3, 0.00034, 0.0033).

Figure 6: Uniformly asymptotic stability of system (10). Time series of S∗(t) and S(t) with
initial values S∗(0) = 0.12, S(0) = 0.3, and t over [0, 50].

Figure 7: Uniformly asymptotic stability of system (10). Time series of I∗(t) and I(t) with
initial values I∗(0) = 0.00034, I(0) = 0.00028, and t over [0, 50].
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Figure 8: Uniformly asymptotic stability of system (10). Time series of R∗(t) and R(t) with
initial values R∗(0) = 0.004, R(0) = 0.0034, and t over [0, 50].

coefficients of the systems are not strictly periodic. Therefore, almost periodicity is a more com-
mon phenomenon than strict periodicity. Hence, we dealt with the almost periodic dynamics
of a time-delayed SIR epidemic model with saturated treatment on time scales. By establish-
ing some dynamic inequalities on time scales, a permanence result for the model is obtained.
Furthermore, by means of the almost periodic functional theory on time scales and Lyapunov
functional, some criteria is obtained for the existence, uniqueness and uniform asymptotic sta-
bility of almost periodic solutions of the model. Thus, the mathematical results in the paper are
quite new, and it may have some application value and practical significance for the prediction
and control strategy for corresponding ecoepidemic systems. Our future research will focus on
the stability of the periodic solution and apply our mathematical methods to the research of
special diseases.
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1 Introduction

The differential, difference and dynamic equations on time scales are three equations
play important role for modelling in the environment. Among them, the theory of dy-
namic equations on time scales is the most recent and was introduced by Stefan Hilger
in his PhD thesis in 1988 [13] with three main features: unification, extension and dis-
cretization. Since a time scale is any closed and nonempty subset of the real numbers
set. So, by this theory, we can extend known results from continuous and discrete anal-
ysis to a more general setting. As a matter of fact, this theory allows us to consider time
scales which possess hybrid behaviours (both continuous and discrete). These types
of time scales play an important role for applications, since most of the phenomena in
the environment are neither only discrete nor only continuous, but they possess both
behaviours. Moreover, basic results on this issue have been well documented in the
articles Agarwal and Bohner [1], Agarwal et al. [2] and monographs of Bohner and
Peterson [6, 7].

The study of turbulent flow through porous media is important for a wide range of
scientific and engineering applications such as fluidized bed combustion, compact heat
exchangers, combustion in an inert porous matrix, high temperature gas-cooled reactors,
chemical catalytic reactors [8] and drying of different products such as iron ore [16].
To study such type of problems, Leibenson [14] introduced the following p-Laplacian
equation, (

φp(ϑ
′(t))

)′
= f

(
t, ϑ(t), ϑ′(t)

)
,

where φp(ϑ) = |ϑ|p−2ϑ, p > 1, is the p-Laplacian operator its inverse function is
denoted byφq(τ) withφq(τ) = |τ |q−2τ , and p, q satisfy 1/p+1/q = 1. It is well known
fact that the p-Laplacian operator and fractional calculus arises from many applied fields
such as turbulant filtration in porous media, blood flow problems, rheology, modelling of
viscoplasticity, material science, it is worth studying the fractional differential equations
with p-Laplacian operator.

In this paper, we consider an operatorφ called increasing homeomorphism and posi-
tive homomorphism operator(IHPHO), which generalizes and improves the p-Laplacian
operator for some p > 1, and φ is not necessarily odd. Liang and Zhang [15] studied
countably many positive solutions for nonlinear singular m–point boundary value prob-
lems on time scales with IHPHO,(

φ(ϑ∆(t))
)∇

+ a(t)f
(
ϑ(t)

)
= 0, t ∈ [0, T ]T

ϑ(0) =
m−2∑
i=1

aiϑ(ξi), ϑ
∆(T ) = 0,

by using the fixed-point index theory and a new fixed-point theorem in cones.
In [9], Dogan considered second order p–Laplacian boundary value problem on time
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scales, (
φp(ϑ

∆(t))
)∇

+ω(t)f
(
t, ϑ(t)

)
= 0, t ∈ [0, T ]T

ϑ(0) =
m−2∑
i=1

aiϑ(ξi), φp(ϑ
∆(T )) =

m−2∑
i=1

biφp(ϑ
∆(ξi)),

and established existence of multiple positive solutions by applying fixed-point index
theory.

Inspired by aforementioned works, in this paper by applying Hölder’s inequality and
Krasnoselskii’s cone fixed point theorem in a Banach space, we establish the existence
of denumerably many positive solutions for dynamical iterative system of two-point
boundary value problem with n singularities and involving IHPHO on time scales,

φ
(
ϑ∆∇
j (t)

)
+ ζ(t)fj

(
ϑj+1(t)

)
= 0, 1 ≤ j ≤ `, t ∈ [0,T]T

ϑ`+1(t) = ϑ1(t), t ∈ [0,T]T,

}
(1.1)

ϑj(0) =

∫ T

0

κ(s)ϑj(s)∇s, 1 ≤ j ≤ `,

ϑj(T) =

∫ T

0

κ(s)ϑj(s)∇s, 1 ≤ j ≤ `,

 (1.2)

where ` ∈ N, ζ(t) =
n∏

i=1

ζi(t) and each ζi(t) ∈ Lpi
∇([0,T]T)(pi ≥ 1) has a singularity in

the interval
(

0,
T

2

)
and φ : R→ R is an IHPHO with φ(0) = 0.

A projection φ : R → R is called a IHPHO, if the following three conditions are
fulfilled,

(a) φ(τ1) ≤ φ(τ2) whenever τ1 ≤ τ2, for any real numbers τ1, τ2.

(b) φ is a continuous bijection and its inverse φ−1 is continuous.

(c) φ(τ1τ2) = φ(τ1)φ(τ2) for any real numbers τ1, τ2.

We assume the following conditions are true in the entire paper:

(H1) fj : [0,+∞)→ [0,+∞) and κ : [0,T]T → [0,+∞) are continuous,

(H2) there exists a sequence {tr}∞r=1 such that 0 < tr+1 < tr <
T

2
,

lim
r→∞

tr = t∗ <
T

2
, lim
t→tr

ζi(t) = +∞, i, r ∈ N

and each ζi(t) does not vanish identically on any subinterval of [0,T]T.Moreover,
there exists δi > 0 such that

δi < φ
−1 (ζi(t)) <∞ a.e. on [0,T]T, i = 1, 2, · · · , n.
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2 Preliminaries
In this section, we introduce some basic definitions and lemmas which are useful for
our later discussions; for details, see [3–6, 11, 18, 19].

Definition 2.1. A time scale T is a nonempty closed subset of the real numbers R. T has
the topology that it inherits from the real numbers with the standard topology. It follows
that the jump operators σ, ρ : T → T, and the graininess µ : T → R+ are defined
by σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t}, and µ(t) = ρ(t) − t,
respectively.

• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, σ(t) > t, respectively.

• If T has a right-scattered minimum m, then Tk = T\{m}; otherwise Tk = T.
• If T has a left-scattered maximum m, then Tk = T\{m}; otherwise Tk = T.
• A function f : T→ R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of all
rd-continuous functions f : T→ R is denoted by Crd = Crd(T) = Crd(T,R).

• A function f : T → R is called ld-continuous provided it is continuous at left-dense
points in T and its right-sided limits exist (finite) at right-dense points in T. The set of
all ld-continuous functions f : T→ R is denoted by Cld = Cld(T) = Cld(T,R).

• By an interval time scale, we mean the intersection of a real interval with a given time
scale. i.e., [a, b]T = [a, b] ∩ T other intervals can be defined similarly.

Definition 2.2. Let µ∆ and µ∇ be the Lebesgue ∆− measure and the Lebesgue ∇−
measure on T, respectively. If A ⊂ T satisfies µ∆(A) = µ∇(A), then we call A is
measurable on T, denoted µ(A) and this value is called the Lebesgue measure of A. Let
P denote a proposition with respect to t ∈ T.

(i) If there exists E1 ⊂ A with µ∆(E1) = 0 such that P holds on A\E1, then P is
said to hold ∆–a.e. on A.

(ii) If there exists E2 ⊂ A with µ∇(E2) = 0 such that P holds on A\E2, then P is
said to hold∇–a.e. on A.

Definition 2.3. Let E ⊂ T be a ∇–measurable set and p ∈ R̄ ≡ R ∪ {−∞,+∞} be
such that p ≥ 1 and let f : E → R̄ be ∇–measurable function. We say that f belongs
to Lp

∇(E) provided that either∫
E

|f |p(s)∇s <∞ if p ∈ R,

or there exists a constant M ∈ R such that

|f | ≤M, ∇− a.e. on E if p = +∞.



Iterative Systems of BVP on Time Scales 157

Lemma 2.4. Let E ⊂ T be a∇–measurable set. If f : T→ R is a∇–integrable on E,
then ∫

E

f(s)∇s =

∫
E

f(s)ds+
∑
i∈IE

(
ti − ρ(ti)

)
f(ti),

where IE := {i ∈ I : ti ∈ E} and {ti}i∈I , I ⊂ N, is the set of all left-scattered points
of T.

Lemma 2.5. Suppose 0 < η < 1, where η =

∫ T

0

κ(τ)∇τ. Then for any %(t) ∈

C([0,T]T), boundary value problem,

−φ(ϑ∆∇
1 (t)) = %(t), t ∈ [0,T]T, (2.1)

ϑ1(0) = ϑ1(T) =

∫ T

0

κ(τ)ϑ1(τ)∇τ, (2.2)

has a unique solution

ϑ1(t) =

∫ T

0

ℵ(t, τ)φ−1(%(τ))∇τ, (2.3)

where

ℵ(t, τ) = ℵ0(t, τ) +
1

1− η

∫ T

0

ℵ0(τ1, τ)κ(τ1)∇τ1, (2.4)

in which

ℵ0(t, τ) =
1

T

{
t(T− τ), t ≤ τ,

τ(T− t), τ ≤ t.
(2.5)

Proof. Suppose ϑ1 is a solution of (2.1), then

ϑ1(t) = −
∫ t

0

∫ τ

0

φ−1(%(τ1))∇τ1∆τ+ At+B

= −
∫ t

0

(t− τ)φ−1(%(τ))∇τ+ A1t+ A2,

where A1 = ϑ∆
1 (0) and A2 = ϑ1(0). By the conditions (2.2), we get

A1 =
1

T

∫ T

0

(T− τ)φ−1(%(τ))∇τ,
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and

A2 =

∫ T

0

κ(τ)ϑ1(τ)∇τ

=

∫ T

0

κ(τ)

[
−
∫ τ

0

(τ− τ1)φ−1(%(τ1))∇τ1 + A1τ+ A2

]
∇τ

=

∫ T

0

κ(τ)

[
−
∫ τ

0

(τ− τ1)φ−1(%(τ1))∇τ1

+
τ

T

∫ T

0

(T− τ1)φ−1(%(τ1))∇τ1

]
∇τ+ A2η

=

∫ T

0

κ(τ)

[ ∫ τ

0

s

T
(T− τ1)φ−1(%(τ1))∇τ1

+

∫ T

τ

τ

T
(T− τ1)φ−1(%(τ1))∇τ1

]
∇τ+ A2η

=

∫ T

0

κ(τ)

[ ∫ T

0

ℵ0(τ, s)φ−1(%(τ))∇τ
]
∇τ+ A2η

=

∫ T

0

[ ∫ T

0

ℵ0(τ, s)κ(τ)∇τ
]
φ−1(%(τ))∇τ+ A2η

=
1

1− η

∫ T

0

[ ∫ T

0

ℵ0(τ, s)κ(τ)∇τ
]
φ−1(%(τ))∇τ.

So, we have

ϑ1(t) =−
∫ t

0

(t− τ)φ−1(%(τ))∇τ+

∫ T

0

t

T
(T− τ)φ−1(%(τ))∇τ

+
1

1− η

∫ T

0

[ ∫ T

0

ℵ0(τ1, τ)κ(τ1)∇τ1

]
φ−1(%(τ))∇τ

=

∫ t

0

τ

T
(T− t)φ−1(%(τ))∇τ+

∫ T

t

t

T
(T− τ)φ−1(%(τ))∇τ

+
1

1− η

∫ T

0

[ ∫ T

0

ℵ0(τ1, τ)κ(τ1)∇τ1

]
φ−1(%(τ))∇τ

=

∫ T

0

ℵ0(t, τ)φ−1(%(τ))∇τ

+
1

1− η

∫ T

0

[ ∫ T

0

ℵ0(τ1, τ)κ(τ1)∇τ1

]
φ−1(%(τ))∇τ

=

∫ T

0

[
ℵ0(t, τ) +

1

1− η

∫ T

0

ℵ0(τ1, τ)κ(τ1)∇τ1

]
φ−1(%(τ))∇τ

=

∫ T

0

ℵ(t, τ)φ−1(%(τ))∇τ,
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This completes the proof.

Lemma 2.6. Assume that (H1) holds and let z ∈
(

0,
T

2

)
T

and ηz =

∫ T−z

z

κ(t)∇t.

Then ℵ0(t, τ) and ℵ(t, τ) have the following properties:

(i) ℵ0(t, τ) > 0 and ℵ(t, τ) > 0 for all t, τ ∈ [0,T]T,

(ii) ℵ0(t, τ) ≤ ℵ0(τ, τ), ℵ(t, τ) ≤ ℵ(τ, τ) ≤ 1

1− η
ℵ0(τ, τ) for all t, τ ∈ [0,T]T,

(iii) ℵ0(t, τ) ≥ z

T
ℵ0(τ, τ) for all t ∈ [z,T− z]T and τ ∈ [0,T]T

(iv) ℵ(t, τ) ≥ λzℵ0(τ, τ) where λz =
z

T

[
1 +

ηz

1− η

]
, for all t ∈ [z,T − z]T and

τ ∈ [0,T]T.

Proof. Inequalities (i) and (ii) are obvious. To prove (iii), let t ∈ [z,T − z]T. Then, for
0 < t < τ < T,

ℵ0(t, τ)

ℵ0(τ, τ)
=
t

τ
≥ z

T
,

and for 0 < τ < t < T,
ℵ0(t, τ)

ℵ0(τ, τ)
=

T− t
T− τ

≥ z

T
.

This proves (iii). Next, for t ∈ [z,T− z]T, we have

ℵ(t, τ) =ℵ0(t, τ) +
1

1− η

∫ T

0

ℵ0(τ1, τ)κ(τ1)∇τ1

≥ z

T
ℵ0(τ, τ) +

1

1− η

∫ T−z

z

ℵ0(τ1, τ)κ(τ1)∇τ1

≥ z

T
ℵ0(τ, τ) +

1

1− η

∫ T−z

z

z

T
ℵ0(τ, τ)κ(τ1)∇τ1

≥ z

T
ℵ0(τ, τ) +

ηz

1− η
z

T
ℵ0(τ, τ)

= λzℵ0(τ, τ).

This completes the proof.

Notice that an `−tuple (ϑ1(t), ϑ2(t), ϑ3(t), · · ·, ϑ`(t)) is a solution of the iterative
boundary value problem (1.1)–(1.2) if and only if

ϑj(t) =

∫ T

0

ℵ(t, τ)φ−1
[
ζ(τ)fj(ϑj+1(τ))

]
∇τ, t ∈ [0,T]T, 1 ≤ j ≤ `,

ϑ`+1(t) = ϑ1(t), t ∈ [0,T]T,
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i.e.,

ϑ1(t) =

∫ T

0

ℵ(t, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)f2

(∫ T

0

ℵ(τ2, τ3)

× φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

Let X be the Banach space Cld([0,T]T,R) with the norm ‖ϑ‖ = max
t∈[0,T]T

|ϑ(t)|. For

z ∈
(

0,
T

2

)
, we define the cone Pz ⊂ X as

Pz =
{
ϑ ∈ X : ϑ(t) is nonnegative and min

t∈[z, 1−z]T
ϑ(t) ≥ λz(1− η)‖ϑ(t)‖

}
,

For any ϑ1 ∈ Pz, define an operator Ω : Pz → X by

(Ωϑ1)(t) =

∫ T

0

ℵ(t, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)f2

(∫ T

0

ℵ(τ2, τ3)

× φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

Lemma 2.7. Assume that (H1)–(H2) hold. Then for each z ∈
(

0,
T

2

)
, Ω(Pz) ⊂ Pz and

Ω : Pz → Pz is completely continuous.

Proof. From Lemma 2.6, ℵ(t, τ) ≥ 0 for all t, τ ∈ [0,T]T. So, (Ωϑ1)(t) ≥ 0. Also, for
ϑ1 ∈ P, we have

(Ωϑ1)(t) ≤ 1

1− η

∫ T

0

ℵ0(τ1, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)

× f2

(∫ T

0

ℵ(τ2, τ3)φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.
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So,

‖Ωϑ1‖ ≤
1

1− η

∫ T

0

ℵ0(τ1, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)

× f2

(∫ T

0

ℵ(τ2, τ3)φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

Again from Lemma 2.6, we get

min
t∈[z,T−z]T

{(Ωϑ1)(t)} ≥ λz
∫ T

0

ℵ0(τ1, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)

× f2

(∫ T

0

ℵ(τ2, τ3)φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

It follows from the above two inequalities that

min
t∈[z,T−z]T

{(Ωϑ1)(t)} ≥ λz(1− η)‖Ωϑ1‖.

So, Ωϑ1 ∈ Pz and thus Ω(Pz) ⊂ Pz. Next, by standard methods and Arzela–Ascoli
theorem, it can be proves easily that the operator Ω is completely continuous. The proof
is complete.

3 Denumerably Infinitely Many Positive Solutions
For the existence of denumerably many positive solutions for iterative system of bound-
ary value problem (1.1). We apply following theorems.

Theorem 3.1. [10] Let E be a cone in a Banach space X and Λ1, Λ2 are open sets with
0 ∈ Λ1,Λ1 ⊂ Λ2. Let A : E ∩ (Λ2\Λ1)→ E be a completely continuous operator such
that

(a) ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Λ1, and ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Λ2, or

(b) ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Λ1, and ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Λ2.

Then A has a fixed point in E ∩ (Λ2\Λ1).
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Theorem 3.2 (See [7, 17]). Let f ∈ Lp
∇(J) with p > 1, g ∈ Lq

∇(J) with q > 1, and
1

p
+

1

q
= 1. Then fg ∈ L1

∇(J) and ‖fg‖L1
∇
≤ ‖f‖Lp

∇
‖g‖Lq

∇
.

where

‖f‖Lp
∇

:=


[∫

J

|f |p(s)∇s
] 1

p
, p ∈ R,

inf
{
M ∈ R / |f | ≤M ∇− a.e., on J

}
, p =∞,

and J = (a, b]T.

Theorem 3.3 (Hölder). Let f ∈ Lpi
∇(J) with pi > 1, for i = 1, 2, · · · , n and

n∑
i=1

1

pi
= 1.

Then
n∏

i=1

fi ∈ L1
∇(J) and ∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
1

≤
n∏

i=1

‖fi‖pi .

Further, if f ∈ L1
∇(J) and g ∈ L∞∇ (J). Then fg ∈ L1

∇(J) and

‖fg‖1 ≤ ‖f‖1‖g‖∞.

Consider the following three possible cases for ζi ∈ Lpi
∇([0,T]T) :

(i)
n∑

i=1

1

pi
< 1, (ii)

n∑
i=1

1

pi
= 1, (iii)

n∑
i=1

1

pi
> 1.

Firstly, we seek denumerably many positive solutions for the case
n∑

i=1

1

pi
< 1.

Theorem 3.4. Suppose (H1)−(H2) hold, let {zr}∞r=1 be a sequence with zr ∈ (tr+1, tr).
Let {Er}∞r=1 and {Or}∞r=1 be such that

Er+1 <
zr
T
Or < Or < ZOr < Er, r ∈ N,

where

Z = max

{[
λz1

n∏
i=1

δi

∫ T−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}
.

Assume that f satisfies

(C1) fj(ϑ) ≤ φ(M1Er) ∀ t ∈ [0,T]T, 0 ≤ ϑ ≤ Er,
where

M1 <

[
1

1− η
‖ℵ0‖Lq

∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L
pi
∇

]−1

,
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(C2) fj(ϑ) ≥ φ(ZOr) ∀ t ∈ [zr, 1− zr]T,
zr
T
Or ≤ ϑ ≤ Or.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions
{(ϑ[r]

1 , ϑ
[r]
2 , · · ·, ϑ

[r]
` )}∞r=1 such that ϑ[r]

j (t) ≥ 0 on [0,T]T, j = 1, 2, · · ·, ` and r ∈ N.

Proof. Let

Λ1,r = {ϑ ∈ X : ‖ϑ‖ < Er}, Λ2,r = {ϑ ∈ X : ‖ϑ‖ < Or}

be open subsets of X. Let {zr}∞r=1 be given in the hypothesis and we note that

t∗ < tr+1 < zr < tr <
T

2
,

for all r ∈ N.
For each r ∈ N, we define the cone Pzr by

Pzr =
{
ϑ ∈ X : ϑ(t) ≥ 0, min

t∈[zr,T−zr]T
ϑ(t) ≥ zr

T
‖ϑ(t)‖

}
.

Let ϑ1 ∈ Pzr ∩ ∂Λ1,r. Then, ϑ1(τ) ≤ Er = ‖ϑ1‖ for all τ ∈ [0,T]T. By (C1) and for
τ`−1 ∈ [0,T]T, we have∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

≤ 1

1− η

∫ T

0

ℵ0(τ`, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

≤ M1Er

1− η

∫ T

0

ℵ0(τ`, τ`)φ
−1
[
ζ(τ`)

]
∇τ`

≤ M1Er

1− η

∫ T

0

ℵ0(τ`, τ`)φ
−1

[ n∏
i=1

ζi(τ`)

]
∇τ`

≤ M1Er

1− η

∫ T

0

ℵ0(τ`, τ`)
n∏

i=1

φ−1(ζi(τ`))∇τ`.

There exists a q > 1 such that
1

q
+

n∑
i=1

1

pi
= 1. So,

∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ` ≤

M1Er

1− η

∥∥∥ℵ0

∥∥∥
Lq
∇

∥∥∥∥∥
n∏

i=1

φ−1(ζi)

∥∥∥∥∥
L
pi
∇

≤ M1Er

1− η
‖ℵ0‖Lq

∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L
pi
∇

≤ Er.
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It follows in similar manner (for τ`−2 ∈ [0,T]T, ) that

∫ T

0

ℵ(τ`−2, τ`−1)φ−1

[
ζ(τ`−1)f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)]
∇τ`−1

≤
∫ T

0

ℵ(τ`−2, τ`−1)φ−1
[
ζ(τ`−1)f`−1(Er)

]
∇τ`−1

≤ 1

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)φ−1
[
ζ(τ`−1)f`−1(Er)

]
∇τ`−1

≤ M1Er

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)φ−1
[
ζ(τ`−1)

]
∇τ`−1

≤ M1Er

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)φ−1

[ n∏
i=1

ζi(τ`−1)

]
∇τ`−1

≤ M1Er

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)
n∏

i=1

φ−1(ζi(τ`−1))∇τ`−1

≤ M1Er

1− η
‖ℵ0‖Lq

∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L
pi
∇

≤ Er.

Continuing with this bootstrapping argument, we get

(Ωϑ1)(t) =

∫ T

0

ℵ(t, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)f2

(∫ T

0

ℵ(τ2, τ3)

× φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1

≤Er.

Since Er = ‖ϑ1‖ for ϑ1 ∈ Pzr ∩ ∂Λ1,r, we get

‖Ωϑ1‖ ≤ ‖ϑ1‖. (3.1)

Let t ∈ [zr,T− zr]T. Then,

Or = ‖ϑ1‖ ≥ ϑ1(t) ≥ min
t∈[zr,T−zr]T

ϑ1(t) ≥ zr
T
‖ϑ1‖ ≥

zr
T
Or.
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By (C2) and for τ`−1 ∈ [zr,T− zr]T, we have∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

≥ λzr
∫ T−zr

zr

ℵ0(τ`, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

≥ λzrZOr

∫ T−zr

zr

ℵ0(τ`, τ`)φ
−1(ζ(τ`))∇τ`

≥ λzrZOr

∫ T−zr

zr

ℵ0(τ`, τ`)
n∏

i=1

φ−1(ζi(τ`))∇τ`

≥ λz1ZOr

n∏
i=1

δi

∫ T−z1

z1

ℵ0(τ`, τ`)∇τ`

≥ Or.

Continuing with bootstrapping argument, we get

(Ωϑ1)(t) =

∫ T

0

ℵ(t, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)f2

(∫ T

0

ℵ(τ2, τ3)

× φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1

≥Or.

Thus, if ϑ1 ∈ Pzr ∩ ∂Λ2,r, then
‖Ωϑ1‖ ≥ ‖ϑ1‖. (3.2)

It is evident that 0 ∈ Λ2,k ⊂ Λ2,k ⊂ Λ1,k. From (3.1),(3.2), it follows from Theorem
3.1 that the operator Ω has a fixed point ϑ[r]

1 ∈ Pzr ∩
(
Λ1,r\Λ2,r

)
such that ϑ[r]

1 (t) ≥ 0
on [0,T]T, and r ∈ N. Next setting ϑ`+1 = ϑ1, we obtain denumerably many positive
solutions {(ϑ[r]

1 , ϑ
[r]
2 , · · ·, ϑ

[r]
` )}∞r=1 of (1.1)–(1.2) given iteratively by

ϑj(t) =

∫ T

0

ℵ(t, τ)φ−1
[
ζ(τ)fj(ϑj+1(τ))

]
∇τ, t ∈ [0,T]T, j = `, `− 1, · · ·, 1.

The proof is completed.

For
n∑

i=1

1

pi
= 1, we have the following theorem.
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Theorem 3.5. Suppose (H1)−(H2) hold, let {zr}∞r=1 be a sequence with zr ∈ (tr+1, tr).
Let {Er}∞r=1 and {Or}∞r=1 be such that

Er+1 <
zr
T
Or < Or < ZOr < Er, r ∈ N,

where

Z = max

{[
λz1

n∏
i=1

δi

∫ T−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}
.

Assume that f satisfies

(C3) fj(ϑ) ≤ φ(M2Er) ∀ t ∈ [0,T]T, 0 ≤ ϑ ≤ Er,
where

M2 < min


[

1

1− η
‖ℵ0‖L∞∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L
pi
∇

]−1

,Z

 ,

(C4) fj(ϑ) ≥ φ(ZOr) ∀ t ∈ [zr, 1− zr]T,
zr
T
Or ≤ ϑ ≤ Or.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions
{(ϑ[r]

1 , ϑ
[r]
2 , · · ·, ϑ

[r]
` )}∞r=1 such that ϑ[r]

j (t) ≥ 0 on [0,T]T, j = 1, 2, · · ·, ` and r ∈ N.

Proof. For a fixed r, let Λ1,r be as in the proof of Theorem 3.4 and let ϑ1 ∈ Pzr ∩ ∂Λ2,r.
Again

ϑ1(τ) ≤ Er = ‖ϑ1‖,

for all τ ∈ [0,T]T. By (C3) and for τ`−1 ∈ [0,T]T, we have∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

≤ 1

1− η

∫ T

0

ℵ0(τ`, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

≤ M2Er

1− η

∫ T

0

ℵ0(τ`, τ`)φ
−1
[
ζ(τ`)

]
∇τ`

≤ M2Er

1− η

∫ T

0

ℵ0(τ`, τ`)φ
−1

[ n∏
i=1

ζi(τ`)

]
∇τ`

≤ M2Er

1− η

∫ T

0

ℵ0(τ`, τ`)
n∏

i=1

φ−1(ζi(τ`))∇τ`

≤ M2Er

1− η
‖ℵ0‖L∞∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L
pi
∇

≤ Er.
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It follows in similar manner (for τ`−2 ∈ [0,T]T, ) that∫ T

0

ℵ(τ`−2, τ`−1)φ−1

[
ζ(τ`−1)f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)]
∇τ`−1

≤
∫ T

0

ℵ(τ`−2, τ`−1)φ−1
[
ζ(τ`−1)f`−1(Er)

]
∇τ`−1

≤ 1

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)φ−1
[
ζ(τ`−1)f`−1(Er)

]
∇τ`−1

≤ M2Er

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)φ−1
[
ζ(τ`−1)

]
∇τ`−1

≤ M2Er

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)φ−1

[ n∏
i=1

ζi(τ`−1)

]
∇τ`−1

≤ M2Er

1− η

∫ T

0

ℵ0(τ`−1, τ`−1)
n∏

i=1

φ−1(ζi(τ`−1))∇τ`−1

≤ M2Er

1− η
‖ℵ0‖L∞∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L
pi
∇

≤ Er.

Continuing with this bootstrapping argument, we get

(Ωϑ1)(t) =

∫ T

0

ℵ(t, τ1)φ−1

[
ζ(τ1)f1

(∫ T

0

ℵ(τ1, τ2)φ−1

[
ζ(τ2)f2

(∫ T

0

ℵ(τ2, τ3)

× φ−1

[
ζ(τ3)f3

(∫ T

0

ℵ(τ3, τ4) · ··

× f`−1

(∫ T

0

ℵ(τ`−1, τ`)φ
−1
[
ζ(τ`)f`(ϑ1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1

≤Er.

Since Er = ‖ϑ1‖ for ϑ1 ∈ Pzr ∩ ∂Λ1,r, we get

‖Ωϑ1‖ ≤ ‖ϑ1‖. (3.3)

Now define Λ2,r = {ϑ1 ∈ X : ‖ϑ1‖ < Or}. Let ϑ ∈ Pzr ∩ ∂Λ2,r and let τ ∈ [zr, T −
zr]T. Then, the argument leading to (3.2) can be done to the present case. Hence, the
theorem.

Lastly, the case
n∑

i=1

1

pi
> 1.
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Theorem 3.6. Suppose (H1)−(H2) hold, let {zr}∞r=1 be a sequence with zr ∈ (tr+1, tr).
Let {Er}∞r=1 and {Or}∞r=1 be such that

Er+1 <
zr
T
Or < Or < ZOr < Er, r ∈ N,

where

Z = max

{[
λz1

n∏
i=1

δi

∫ T−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}
.

Assume that f satisfies

(C5) fj(ϑ) ≤ φ(M3Er) ∀ t ∈ [0,T]T, 0 ≤ ϑ ≤ Er,
where

M3 < min


[

1

1− η
‖ℵ0‖L∞∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L1
∇

]−1

,Z

 ,

(C6) fj(ϑ) ≥ φ(ZOr) ∀ t ∈ [zr, 1− zr]T,
zr
T
Or ≤ ϑ ≤ Or.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions
{(ϑ[r]

1 , ϑ
[r]
2 , · · ·, ϑ

[r]
` )}∞r=1 such that ϑ[r]

j (t) ≥ 0 on [0,T]T, j = 1, 2, · · ·, ` and r ∈ N.

Proof. The proof is similar to the proof of Theorem 3.1. Therefore, we omit the details
here.

4 Examples
In this section, we present an example to check validity of our main results.

Example 4.1. Consider the following boundary value problem on T = [0, 1].

φ(ϑ′′j (t)) + ζ(t)fj(ϑj+1(t)) = 0, j = 1, 2,

ϑ3(t) = ϑ1(t),

ϑj(0) = ϑj(1) =

∫ 1

0

1

2
ϑj(τ)dτ

 (4.1)

where

φ(ϑ) =


ϑ3

1 + ϑ2
, ϑ ≤ 0,

ϑ2, ϑ > 0,

ζ(t) = ζ1(t)ζ2(t)
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in which
ζ1(t) =

1

|t− 1
4
| 12

and ζ2(t) =
1

|t− 1
3
| 12
,

f1(ϑ) = f2(ϑ) =



1

50
× 10−16, ϑ ∈ (10−16,+∞),

149125× 10−(16r+8) − 1
50
× 10−16r

10−(16r+8) − 10−16r
(ϑ− 10−16r) +

1

50
× 10−16r,

ϑ ∈
[
10−(16r+8), 10−16r

]
,

149125× 10−(16r+8), ϑ ∈
(

1

5
× 10−(16r+8), 10−(16r+8)

)
,

149125× 10−(16r+8) − 1
50
× 10−(16r+16)

1
5
× 10−(16r+8) − 10−(16r+16)

(ϑ− 10−(16r+16))

+
1

50
× 10−(16r+16),

ϑ ∈
(

10−(16r+16),
1

5
× 10−(16r+8)

]
.

Let

tr =
31

64
−

r∑
k=1

1

4(k + 1)4
, zr =

1

2
(tr + tr+1), r = 1, 2, 3, · · · ,

then
z1 =

15

32
− 1

648
<

15

32

and
tr+1 < zr < tr, zr >

1

5
.

Therefore,
zr
T

= zr >
1

5
, j = 1, 2, 3, · · · .

It is clear that

t1 =
15

32
<

1

2
, tr − tr+1 =

1

4(r + 2)4
, r = 1, 2, 3, · · · .

Since
∞∑
j=1

1

j4
=
π4

90
and

∞∑
j=1

1

j2
=
π2

6
, it follows that

t∗ = lim
r→∞

tr =
31

64
−
∞∑
k=1

1

4(r + 1)4
=

47

64
− π4

360
>

1

5
,
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ζ1, ζ2 ∈ Lp[0, 1] for all 0 < p < 2, so δ1 = δ2 =
1√
3
.

η =

∫ T

0

κ(τ)∇τ =

∫ 1

0

1

2
dτ =

1

2
,ηz1 =

∫ T−z1

z1

κ(t)∇t =
1

2
(1−2z1) = 0.03279320988,

λz1 =
z1

T

[
1 +

ηz1
1− η

]
= z1(1 + 2ηz1) = 0.4978492109,

∫ T−z1

z1

ℵ0(τ, τ)∇τ =

∫ 1− 15
32

+ 1
648

15
32
− 1

648

τ(1− τ)dτ = 0.01637309451.

So, we get

Z = max

{[
λz1

n∏
i=1

δi

∫ T−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}
= max

{
386.1654402, 1

}
= 386.1654402.

‖ℵ0‖Lq
∇

=

[∫ 1

0

|ℵ0(τ, τ)|qdτ
] 1

q

< 1 for any 0 < q < 2.

Next, let 0 < a < 1 be fixed. Then ζ1, ζ2 ∈ L1+a[0, 1]. It follows that

‖φ−1(ζ1)‖1+a =

[
1

3− a

(
3

3−a
4 + 1

)
2

1+a
2

] 1
1+a

‖φ−1(ζ2)‖1+a =

[
4

3− a

(
2

3−a
4 + 1

)
(1/3)

3−a
4

] 1
1+a

.

So, for 0 < a < 1, we have

0.1811770116 ≤

[
1

1− η
‖ℵ0‖Lq

∇

n∏
i=1

∥∥φ−1(ζi)
∥∥
L
pi
∇

]−1

≤ 185.5612032.

Taking M1 = 0.17. In addition if we take

Er = 10−8r, Or = 10−(8r+4),

then
Er+1 = 10−(8r+8) <

1

5
× 10−(8r+4) <

zr
T
Or

< Or = 10−(8r+4) < Er = 10−8r,
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ZOr = 386.1654402× 10−(8r+4) < 0.17× 10−8r = M1Er, r = 1, 2, 3, · · · , and f1, f2

satisfies the following growth conditions:

f1(ϑ) = f2(ϑ) ≤φ(M1Er) = M2
1E

2
r = 0.0289× 10−16r, ϑ ∈

[
0, 10−16r

]
f1(ϑ) = f2(ϑ) ≥φ(ZOr) = Z2O2

r

= 149123.7162× 10−(16r+8), ϑ ∈
[

1

5
× 10−(16r+8), 10−(16r+8)

]
.

Then all the conditions of Theorem 3.4 are satisfied. Therefore, by Theorem 3.4, the
iterative boundary value problem (1.1) has denumerably many solutions {(ϑ[r]

1 , ϑ
[r]
2 )}∞r=1

such that ϑ[r]
j (t) ≥ 0 on [0, 1], j = 1, 2 and r ∈ N.
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Abstract
In this paper, we consider an iterative system of singular multipoint boundary value prob-
lems on time scales. The sufficient conditions are derived for the existence of infinitely 
many positive solutions by applying Krasnoselskii’s cone fixed point theorem in a Banach 
space.

Keywords Iterative system · Time scale · Singularity · Cone · Krasnoselskii’s fixed point 
theorem · Positive solutions
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1 Introduction

Differential equations with state-dependent delays have attracted a great deal of interest to 
the researchers since they widely arise from application models, such as population models 
[4], mechanical models [19], infection disease transmission [28], the dynamics of econom-
ical systems [5], position control [9], two-body problem of classical electrodynamics [15], 
etc. As special type of state-dependent delay-differential equations, iterative differential 
equations have distinctive characteristics and have been investigated in recent years, e.g. 
equivariance [30], analyticity [31], convexity [27], monotonicity [16], smoothness [12]. 
Recently [17], Feckan, Wang and Zhao established the maximal and minimal nondecreas-
ing bounded solutions of the following iterative functional differential equations
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where �(i)(t) ∶= x(�(i−1))(t) indicates the i-th iterate of � , where i = 1, 2,… , n, by the 
method of lower and upper solutions.

On the other hand, the theory of time scales was created to unify continuous and dis-
crete analysis. Difference and differential equations can be studied simultaneously by stud-
ying dynamic equations on time scales. A time scale is any closed and nonempty subset of 
the real numbers. So, by this theory, we can extend the continuous and discrete theories 
to cases ”in between.” These types of time scales play an important role for applications, 
since most of the phenomena in the environment are neither only discrete nor only continu-
ous, but they possess both behaviours. Research in this area of mathematics has exceeded 
by far a thousand publications, and numerous applications to literally all branches of sci-
ence such as statistics, biology, economics, finance, engineering, physics, and operations 
research have been given. Moreover, basic results on this issue have been well documented 
in the articles [1, 2] and monographs of Bohner and Peterson [7, 8]. There is a great deal of 
research activity devoted to positive solutions of dynamic equations on time scales, see for 
example [14, 20, 21, 24–26] and references therein.

In [22], Liang and Zhang studied countably many positive solutions for nonlinear singu-
lar m−point boundary value problems on time scales,

by using the fixed-point index theory and a new fixed-point theorem in cones.
In [13], Dogan considered second order m–point boundary value problem on time 

scales,

and established existence of multiple positive solutions by applying fixed-point index 
theory.

Many researchers have concentrated on studying first order iterative differential equa-
tions by different approaches such as fixed point theory, Picard’s successive approximation 
and the technique of nonexpansive operators. But the literature related to the equations of 
higher order is limited since the presence of the iterates increases the difficulty of studying 
them. This motivates us to investigate the following second order dynamical iterative sys-
tem of boundary value problems with singularities on time scales,

��(t) = �
(
t, �(1)(t), �(2)(t),… , �(n)(t)

)
,

(
�(�Δ(t))

)∇
+ a(t)f

(
�(t)

)
= 0, t ∈ [0, a]

�

�(0) =

m−2∑
i=1

ai�(�i), �
Δ(a) = 0,

(
ϕp(�

Δ(t))
)∇

+ ω(t)f
(
t, �(t)

)
= 0, t ∈ [0, T]

�

�(0) =

m−2∑
i=1

ai�(�i), ϕp(�
Δ(T)) =

m−2∑
i=1

biϕp(�
Δ(�i)),

(1)
�Δ∇
�

(t) + λ(t)�
�

(
�
�+1(t)

)
= 0, 1 ≤ � ≤ n, t ∈ (0, σ(a)]

�

�n+1(t) = �1(t), t ∈ (0, σ(a)]
�

,

}

(2)�Δ
�
(0) = 0, �

�
(σ(a)) =

n−2∑
k=1

ck��(ζk), 1 ≤ � ≤ n,



Infinitely many positive solutions for an iterative system…

1 3

where n ∈ ℕ , ck ∈ ℝ
+ ∶= [0,+∞) with 

∑n−2

k=1
ck < 1, 0 < ζk < σ(a)∕2, 

k ∈ {1, 2,… , n − 2, }, λ(t) =
∏m

i=1
λi(t) and each λi(t) ∈ L

pi

∇
((0, σ(a)]

�
)(pi ≥ 1) has a sin-

gularity in the interval (0, σ(a)∕2]
�

. By applying Hölder’s inequality and Krasnoselskii’s 
cone fixed point theorem in a Banach space, we establish the existence of infinitely many 
positive solutions for the system (1). Equation (1) in real continuous time scales describes 
diffusion phenomena with a source or a reaction term. For instance, in thermal conduction, 
it can be interpreted as the one-dimensional heat conduction equation which models the 
steady-states of a heated bar of length a with a controller at � = a that adds or removes heat 
according to a sensor, while the left endpoint is maintained at 0◦ C and � is the distributed 
temperature source function depending on delayed temperatures. We refer the interested 
reader to [10, 11] and the references therein for more details.

We assume the following conditions are true throughout the paper: 

(H1)  �
�
∶ [0,+∞) → [0,+∞) is continuous.

(H2)  there exists a sequence {tr}
∞
r=1

 such that 0 < tr+1 < tr < σ(a)∕2,

 Further, for each i ∈ {1, 2,… , m}, there exist δi > 0 such that λi(t) > δi.

2  Preliminaries

In this section, we introduce some basic definitions and lemmas which are useful for our 
later discussions.

Definition 2.1 [7] A time scale �  is a nonempty closed subset of the real numbers ℝ. �  has 
the topology that it inherits from the real numbers with the standard topology. It follows 
that the jump operators σ, � ∶ � → � , and the graininess � ∶ � → [0,+∞) are defined by 
σ(t) = inf{τ ∈ � ∶ τ > t}, 𝜌(t) = sup{τ ∈ � ∶ τ < t}, and �(t) = σ(t) − t, respectively.

• The point t ∈ �  is left-dense, left-scattered, right-dense, right-scattered if �(t) = t, 
𝜌(t) < t, σ(t) = t, σ(t) > t, respectively.

• If �  has a right-scattered minimum m, then �� = ��{m} ; otherwise �� = � .

• If �  has a left-scattered maximum m, then � � = ��{m} ; otherwise � � = � .

• A function f ∶ 𝕋 → ℝ is called rd-continuous provided it is continuous at right-dense 
points in �  and its left-sided limits exist (finite) at left-dense points in � . The set of all 
rd-continuous functions f ∶ 𝕋 → ℝ is denoted by Crd = Crd(𝕋 ) = Crd(𝕋 ,ℝ).

• A function f ∶ 𝕋 → ℝ is called ld-continuous provided it is continuous at left-dense 
points in �  and its right-sided limits exist (finite) at right-dense points in � . The set of 
all ld-continuous functions f ∶ 𝕋 → ℝ is denoted by Cld = Cld(𝕋 ) = Cld(𝕋 ,ℝ).

• By an interval time scale, we mean the intersection of a real interval with a given time 
scale. i.e., [a, b]

�
= [a, b] ∩ � . Other intervals can be defined similarly.

Definition 2.2 [6] Let �Δ and �∇ be the Lebesgue Δ− measure and the Lebesgue ∇−meas-
ure on � , respectively. If A ⊂ �  satisfies �Δ(A) = �∇(A), then we call A is measurable on � , 
denoted �(A) and this value is called the Lebesgue measure of A. Let P denote a proposi-
tion with respect to t ∈ � .

lim
r→∞

tr = t∗ < σ(a)∕2, lim
t→tr

λi(t) = +∞, i = 1, 2,… , m.
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 (i) If there exists Γ1 ⊂ A with �Δ(Γ1) = 0 such that P holds on A�Γ1, then P is said to 
hold Δ–a.e. on A.

 (ii) If there exists Γ2 ⊂ A with �∇(Γ2) = 0 such that P holds on A�Γ2, then P is said to 
hold ∇–a.e. on A.

Definition 2.3 [3, 6] Let E ⊂ �  be a Δ–measurable set and p ∈ ℝ̄ ≡ ℝ ∪ {−∞,+∞} be 
such that p ≥ 1 and let f ∶ E → ℝ̄ be Δ–measurable function. We say that f belongs to 
L

p

Δ
(E) provided that either

or there exists a constant M ∈ ℝ such that

Lemma 2.4 [29] Let E ⊂ �  be a Δ–measurable set. If f ∶ 𝕋 → ℝ is Δ–integrable on E,   
then

where

IE ∶= {i ∈ I ∶ ti ∈ E} and {ti}i∈I , I ⊂ ℕ, is the set of all right-scattered points of � .

Definition 2.5 [29] Let E ⊂ �  be a ∇–measurable set and p ∈ ℝ̄ ≡ ℝ ∪ {−∞,+∞} be 
such that p ≥ 1 and let f ∶ E → ℝ̄ be ∇–measurable function. Say that f belongs to Lp

∇
(E) 

provided that either

or there exists a constant C ∈ ℝ such that

Lemma 2.6 [29] Let E ⊂ �  be a ∇–measurable set. If f ∶ 𝕋 → ℝ is a ∇–integrable on E,  
then

where IE ∶= {i ∈ I ∶ ti ∈ E} and {ti}i∈I , I ⊂ ℕ, is the set of all left-scattered points of � .

Lemma 2.7 For any �(t) ∈ Cld((0, σ(a)]
�
), the boundary value problem,

∫E

|f |p(s)Δs < ∞ if p ∈ [1,+∞),

|f | ≤ M, Δ − a.e. on E if p = +∞.

∫E

f (s)Δs = ∫E

f (s)ds +
∑
i∈IE

(
σ(ti) − ti

)
f (ti) + r(f , E),

r(f , E) =

{
��(E)f (M), if � ∈ � ,

0, if � ∉ � ,

∫E

|f |p(s)∇s < ∞ if p ∈ ℝ,

|f | ≤ C, ∇ − a.e. on E if p = +∞.

∫E

f (s)∇s = ∫E

f (s)ds +
∑
i∈IE

(
ti − �(ti)

)
f (ti),

(3)�Δ∇
1

(t) + �(t) = 0, t ∈ (0, σ(a)]
�

,
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has a unique solution

where

Proof Suppose �1 is a solution of (3), then

where � = �Δ
1
(0) and � = �1(0) . Using conditions (4), we get � = 0 and

So, we have

Plugging t = ζk and multiplying with ck then summing from 1 to n − 2 in the above equa-
tion (7), we obtain

Substituting (8) into (7), we get required solution (5). This completes the proof.   ◻

Lemma 2.8 Suppose (H1)–(H2) hold. Let η ∈ (0, σ(a)∕2)
�
 with ζk ∈ [η, σ(a) − η]

�
, 

k ∈ {1, 2,⋯ , n − 2}, the kernel ℵ(t, τ) have the following properties: 

 (i) 0 ≤ ℵ(t, τ) ≤ ℵ(τ, τ) for all t, τ ∈ [0, σ(a)]
�

,

 (ii) η

σ(a)
ℵ(τ, τ) ≤ ℵ(t, τ) for all t ∈ [η, σ(a) − η]

�
 and τ ∈ [0, σ(a)]

�
.

Proof (i) is evident. To prove (ii), let t ∈ [η, σ(a) − η]
�
 and τ ≤ t. Then

(4)�Δ
1
(0) = 0, �1(σ(a)) =

n−2∑
k=1

ck�1(ζk)

(5)�1(t) = ∫
σ(a)

0

ℵ(t, τ)�(τ)∇τ +
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ)�(τ)∇τ,

(6)ℵ(t, τ) =

{
σ(a) − t, if 0 ≤ τ ≤ t ≤ σ(a),

σ(a) − τ, if 0 ≤ t ≤ τ ≤ σ(a).

�1(t) = −∫
t

0 ∫
τ

0

�(τ1)∇τ1Δτ + �t + �

= −∫
t

0

(t − τ)�(τ)∇τ + �t + �,

� = ∫
σ(a)

0

(σ(a) − τ)�(τ)∇τ +

n−2∑
k=1

ck�1(ζk).

(7)

�1(t) = − ∫
t

0

(t − τ)�(τ)∇τ + ∫
σ(a)

0

(σ(a) − τ)�(τ)∇τ +

n−2∑
k=1

ck�1(ζk)

=∫
σ(a)

0

ℵ(t, τ)�(τ)∇τ +

n−2∑
k=1

ck�1(ζk).

(8)�1(ζk) =
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ)�(τ)∇τ.
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For t ≤ τ,

This completes the proof.   ◻

Notice that an n−tuple (�1(t), �2(t), �3(t),… , �n(t)) is a solution of the iterative boundary 
value problem (1)–(2) if and only if

and

That is

Let � be the Banach space Cld((0, σ(a)]
𝕋

,ℝ) with the norm ‖�‖ = max
t∈(0,σ(a)]

�

��(t)�. For 

η ∈ (0, σ(a)∕2)
�

, we define the cone �η ⊂ � as

For any �1 ∈ �η, define an operator L ∶ �η → � by

ℵ(t, τ)

ℵ(τ, τ)
=

σ(a) − t

σ(a) − τ
≥ η

σ(a)
.

ℵ(t, τ)

ℵ(τ, τ)
=

σ(a) − τ

σ(a) − τ
= 1 ≥ η

σ(a)
.

�
�
(t) = ∫

σ(a)

0

ℵ(t, τ)λ(τ)�
�
(�

�+1(τ))∇τ

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ)λ(τ)�
�
(�

�+1(τ))∇τ

�
�+1(t) = �1(t), t ∈ (0, a]

�
, 1 ≤ � ≤ n.

�1(t) = ∫
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

�
∫

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1.

�η =

�
� ∈ � ∶ �(t) is nonnegative and min

t∈[η, σ(a)−η]
�

�(t) ≥ η

σ(a)
‖�(t)‖

�
,
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Lemma 2.9 Assume that (H1)–(H2) hold. Then for each η ∈ (0, σ(a)∕2)
�

, L(�η) ⊂ �η and 
L ∶ �η → �η are completely continuous.

Proof From Lemma  2.8, ℵ(t, τ) ≥ 0 for all t, τ ∈ (0, σ(a)]
�

. So, (L�1)(t) ≥ 0. Also, for 
�1 ∈ �η, we have

Again from Lemma 2.8, we get

(L�1)(t) = ∫
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

�
∫

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck ∫
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
∫

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
∫

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1.

‖L�1‖ = max
t∈(0,σ(a)]

�
�

σ(a)

0

ℵ(t, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

≤ �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1.
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It follows from the above two inequalities that

So, L�1 ∈ �η and thus L(�η) ⊂ �η. Next, by standard methods and Arzela-Ascoli theorem, 
it can be proved easily that the operator L  is completely continuous. The proof is com-
plete.   ◻

3  Infinitely many positive solutions

For the the existence of infinitely many positive solutions for iterative system of boundary 
value problem (1)–(2). We apply following theorems.

Theorem 3.1 (Krasnoselskii’s [18]) Let B be a cone in a Banach space E and �1, �2 are 
open sets with 0 ∈ �1, �1 ⊂ �2. Let K ∶ B ∩ (�2��1) → B be a completely continuous oper-
ator such that 

(a)  ‖Kv‖ ≤ ‖v‖, v ∈ B ∩ ��1, and ‖Kv‖ ≥ ‖v‖, v ∈ B ∩ ��2, or
(b)  ‖Kv‖ ≥ ‖v‖, v ∈ B ∩ ��1, and ‖Kv‖ ≤ ‖v‖, v ∈ B ∩ ��2.

 Then K has a fixed point in B ∩ (�2��1).

Theorem  3.2 (Hölder’s Inequality  [3, 23]) Let f ∈ L
p

∇
(I) with p > 1, g ∈ L

q

∇
(I) with 

q > 1, and 1

p
+

1

q
= 1. Then fg ∈ L1

∇
(I) and ‖fg‖L1

∇
≤ ‖f‖L

p

∇
‖g‖L

q

∇
. where

and I = [a, b]
�

. Moreover, if f ∈ L1
∇
(I) and g ∈ L∞

∇
(I). Then fg ∈ L1

∇
(I) and 

‖fg‖L1
∇
≤ ‖f‖L1

∇
‖g‖L∞

∇
.

Consider the following three possible cases for λi ∈ L
pi

Δ
(0, σ(a)]

�
∶

min
t∈[η,a−η]

�

�
(L�1)(t)

� ≥ η

σ(a)

�
�

σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

+
1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn

�
⋅ ⋅ ⋅ Δτ3

�
Δτ2

�
Δτ1

�
.

min
t∈[η,a−η]

�

�
(L�1)(t)

� ≥ η

σ(a)
‖L�1‖.

‖f‖L
p

∇
∶=

⎧⎪⎨⎪⎩

�
�I

�f �p(s)∇s
� 1

p

, p ∈ ℝ,

inf
�

K ∈ ℝ ∕ �f � ≤ K ∇ − a.e., on I
�

, p = ∞,
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Firstly, we seek infinitely many positive solutions for the case 
m∑

i=1

1

pi

< 1.

Theorem  3.3 Suppose (H1)–(H2) hold, let {ηr}
∞
r=1

 be a sequence with tr+1 < ηr < tr. Let 
{Γr}

∞
r=1

 and {Λr}
∞
r=1

 be such that

where

Assume that �
�
 satisfies 

(�1)  �
�
(�) ≤ �1Γr

2
 ∀ t ∈ (0, σ(a)]

�
, 0 ≤ � ≤ Γr, where 

(�2)  �
�
(�) ≥ θΛr

2
 ∀ t ∈ [ηr, σ(a) − ηr]� ,

ηr

σ(a)
Λr ≤ � ≤ Λr.

 Then the iterative boundary value problem (1)–(2) has infinitely many solutions 
{(�

[r]

1
, �

[r]

2
, ⋅ ⋅ ⋅, �[r]

n
)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on (0, σ(a)]

�
, 𝓁 = 1, 2, ⋅ ⋅ ⋅, n and r ∈ ℕ.

Proof Let

be open subsets of �. Let {ηr}
∞
r=1

 be given in the hypothesis and we note that

for all r ∈ ℕ . For each r ∈ ℕ, we define the cone �ηr
 by

Let �1 ∈ �ηr
∩ ��1,r. Then, �1(τ) ≤ Γr = ‖�1‖ for all τ ∈ (0, σ(a)]

�
. By (�1) and for 

τm−1 ∈ (0, σ(a)]
�

, we have

m∑
i=1

1

pi

< 1,

m∑
i=1

1

pi

= 1,

m∑
i=1

1

pi

> 1.

Γr+1 <
ηr

σ(a)
Λr < Λr < θΛr < Γr and

ηr

σ(a)
<

1

2
, r ∈ ℕ,

θ = max

��
η1

σ(a)

m�
i=1

δi ∫
σ(a)−η1

η1

ℵ(τ, τ)Δτ

�−1

,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

η1

σ(a)

m�
i=1

δi ∫
σ(a)−η1

η1

ℵ(τ, τ)∇τ

�−1�
.

�1 < min

⎧⎪⎨⎪⎩

�
‖ℵ‖L

q

∇

m�
i=1

��λi
��L

pi
∇

�−1

,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

‖ℵ‖L
q

∇

m�
i=1

��λi
��L

pi
∇

�−1⎫⎪⎬⎪⎭
,

�1,r = {� ∈ � ∶ ‖�‖ < Γr}, �2,r = {� ∈ � ∶ ‖�‖ < Λr}

t∗ < tr+1 < ηr < tr <
σ(a)

2
,

�ηr
=
�
� ∈ � ∶ �(t) ≥ 0, min

t∈[ηr ,σ(a)−ηr]�
�(t) ≥ ηr

σ(a)
‖�(t)‖

�
.
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There exists a q > 1 such that 1
q
+

n∑
i=1

1

pi

= 1. So,

It follows in similar manner (for τn−2 ∈ (0, σ(a)]
�

, ) that

Continuing with this bootstrapping argument, we get

Also, we note that

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn ≤ �
σ(a)

0

ℵ(τn, τn)λ(τn)�n(�1(τn))∇τn

≤ �1Γr

2 �
σ(a)

0

ℵ(τn, τn)

m∏
i=1

λi(τn)∇τn.

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))Δτn ≤ �1Γr

2
��ℵ��L

q

∇

�����

m�
i=1

λi

�����L
pi
∇

≤ �1Γr

2
‖ℵ‖L

q

∇

m�
i=1

��λi
��L

pi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
∇τn−1

≤ �
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �
σ(a)

0

ℵ(τn−1, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �1Γr

2 �
σ(a)

0

ℵ(τn−1, τn−1)

m�
i=1

λi(τn−1)∇τn−1

≤ �1Γr

2
‖ℵ‖L

q

∇

m�
i=1

��λi
��L

pi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

[
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

[
�

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

[
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

]
⋅ ⋅ ⋅ ∇τ3

]
∇τ2

]
∇τ1 ≤ Γr

2
.
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Thus, (L�1)(t) ≤ Γr

2
+

Γr

2
= Γr. Since Γr = ‖�1‖ for �1 ∈ �ηr

∩ ��1,r, we get

Next, let t ∈ [ηr, σ(a) − ηr]� . Then,

By (�2) and for τn−1 ∈ [ηr, σ(a) − ηr]� , we have

and

1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
⋅ ⋅ ⋅ ∇τ2

�
∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1(Γr)∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck

�1Γr

2
‖ℵ‖L

q

∇

m�
i=1

��λi
��L

pi
∇

≤ Γr

2
.

(9)‖L�1‖ ≤ ‖�1‖.

Λr = ‖�1‖ ≥ �1(t) ≥ min
t∈[ηr ,a−ηr]�

�1(t) ≥ ηr

σ(a)
‖�1‖ ≥ ηr

σ(a)
Λr.

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))
]
∇τn

≥ �
σ(a)−ηr

ηr

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

≥ ηr

σ(a)

θΛr

2 �
σ(a)−ηr

ηr

ℵ(τn, τn)λ(τn))∇τn

≥ ηr

σ(a)

θΛr

2 �
σ(a)−ηr

ηr

ℵ(τn, τn)

m∏
i=1

λi(τn))∇τn

≥ η1

σ(a)

θΛr

2

m∏
i=1

δi �
σ(a)−η1

η1

ℵ(τn, τn)∇τn

≥ Λr

2
.
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Continuing with bootstrapping argument, we get (L�1)(t) ≥ Λr

2
+

Λr

2
= Λr. Thus, if 

�1 ∈ �ηr
∩ ��2,r, then

It is evident that 0 ∈ �2,k ⊂ �2,k ⊂ �1,k. From (9),(10), it follows from Theorem  3.1 
that the operator L  has a fixed point �[r]

1
∈ �ηr

∩
(
�1,r��2,r

)
 such that �[r]

1
(t) ≥ 0 on 

(0, a]
�

, and r ∈ ℕ. Next setting �m+1 = �1, we obtain infinitely many positive solutions 
{(�

[r]

1
, �

[r]

2
,… , �[r]

m
)}∞

r=1
 of (1)–(2) given iteratively by

The proof is completed.   ◻

For 
m∑

i=1

1

pi

= 1, we have the following theorem.

Theorem  3.4 Suppose (H1)–(H2) hold, let {ηr}
∞
r=1

 be a sequence with tr+1 < ηr < tr. Let 
{Γr}

∞
r=1

 and {Λr}
∞
r=1

 be such that

Assume that �
�
 satisfies (�2) and 

(�3)  �
�
(�) ≤ �2Γr

2
 ∀ t ∈ (0, σ(a)]

�
, 0 ≤ � ≤ Γr, where 

 Then the iterative boundary value problem (1)–(2) has infinitely many solutions {(
�
[r]

1
, �

[r]

2
,… , �[r]

n

)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on (0, σ(a)]

�
, � = 1, 2,… , n and r ∈ ℕ.

Proof For a fixed r,   let �1,r be as in the proof of Theorem  3.3 and let �1 ∈ �ηr
∩ ��2,r. 

Again

1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
⋅ ⋅ ⋅ ∇τ2

�
∇τ1

≥ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck

η1

σ(a) �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1(Γr)∇τ1

≥ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck

η1

σ(a)

θΛr

2

m�
i=1

δi �
σ(a)−η1

η1

ℵ(τ1, τ1)∇τ1

(10)‖L�1‖ ≥ ‖�1‖.

�
�
(t) = ∫

σ(a)

0

ℵ(t, τ)λ(τ)�
�
(�

�+1(τ))∇τ, t ∈ (0, σ(a)]
�

, � = n, n − 1,… , 1.

Γr+1 <
ηr

σ(a)
Λr < Λr < θΛr < Γr and

ηr

σ(a)
<

1

2
, r ∈ ℕ.

�2 < min

⎧⎪⎨⎪⎩

�
‖ℵ‖L∞

∇

m�
i=1

��λi
��L

pi
∇

�−1

,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

‖ℵ‖L∞
∇

m�
i=1

��λi
��L

pi
∇

�−1⎫⎪⎬⎪⎭
.
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for all τ ∈ (0, σ(a)]
�

. By (�3) and for τ
�−1 ∈ (0, σ(a)]

�
, we have

It follows in similar manner (for τn−2 ∈ (0, σ(a)]
�

, ) that

Continuing with this bootstrapping argument, we get

Also, we note that

�1(τ) ≤ Γr = ‖�1‖,

�
σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn ≤ �
σ(a)

0

ℵ(τn, τn)λ(τn)�n(�1(τn))∇τn

≤ �1Γr

2 �
σ(a)

0

ℵ(τn, τn)

m�
i=1

λi(τn)∇τn

≤ �1Γr

2
��ℵ��L∞

∇

�����

m�
i=1

λi

�����L
pi
∇

≤ �1Γr

2
‖ℵ‖L∞

∇

m�
i=1

��λi
��L

pi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
∇τn−1

≤ �
σ(a)

0

ℵ(τn−2, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �
σ(a)

0

ℵ(τn−1, τn−1)λ(τn−1)�n−1(Γr)∇τn−1

≤ �1Γr

2 �
σ(a)

0

ℵ(τn−1, τn−1)

m�
i=1

λi(τn−1)∇τn−1

≤ �1Γr

2
‖ℵ‖L∞

∇

m�
i=1

��λi
��L

pi
∇

≤ Γr

2
< Γr.

�
σ(a)

0

ℵ(t, τ1)λ(τ1)�1

[
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)�2

[
�

σ(a)

0

ℵ(τ2, τ3)⋯

× �n−1

[
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

]
⋅ ⋅ ⋅ ∇τ3

]
∇τ2

]
∇τ1 ≤ Γr

2
.
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Thus, (L�1)(t) ≤ Γr

2
+

Γr

2
= Γr. Since Γr = ‖�1‖ for �1 ∈ �ηr

∩ ��1,r, we get

Now define �2,r = {�1 ∈ � ∶ ‖�1‖ < Λr}. Let �1 ∈ �ηr
∩ ��2,r and let τ ∈ [ηr, σ(a) − ηr]� . 

Then, the argument leading to (11) can be done to the present case. Hence, the theorem.  
 ◻

Lastly, the case 
m∑

i=1

1

pi

> 1.

Theorem  3.5 Suppose (H1)–(H2) hold, let {ηr}
∞
r=1

 be a sequence with tr+1 < ηr < tr. Let 
{Γr}

∞
r=1

 and {Λr}
∞
r=1

 be such that

Assume that �
�
 satisfies (�2) and 

(�4)  �
�
(�) ≤ �2Γr

2
 ∀ t ∈ (0, σ(a)]

�
, 0 ≤ � ≤ Γr, where 

 Then the iterative boundary value problem (1)–(2) has infinitely many solutions 
{(�

[r]

1
, �

[r]

2
,… , �[r]

n
)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on (0, σ(a)]

�
, � = 1, 2,… , n and r ∈ ℕ.

Proof The proof is similar to the proof of Theorem 3.1. So, we omit the details here.   ◻

4  Example

In this section, we provide two examples to check validity of our main results.

Example 4.1 Consider the following boundary value problem on � = [0, 1].

1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(ζk, τ1)λ(τ1)�1

�
�

σ(a)

0

ℵ(τ1, τ2)λ(τ2)⋯

× �n−1

�
�

σ(a)

0

ℵ(τn−1, τn)λ(τn)�n(�1(τn))∇τn

�
⋅ ⋅ ⋅ ∇τ2

�
∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck �
σ(a)

0

ℵ(τ1, τ1)λ(τ1)�1(Γr)∇τ1

≤ 1

1 −
∑n−2

k=1
ck

n−2�
k=1

ck

�1Γr

2
‖ℵ‖L∞

∇

m�
i=1

��λi
��L

pi
∇

≤ Γr

2
.

(11)‖L�1‖ ≤ ‖�1‖.

Γr+1 <
ηr

σ(a)
Λr < Λr < θΛr < Γr and

ηr

σ(a)
<

1

2
, r ∈ ℕ.

�2 < min

⎧⎪⎨⎪⎩

�
‖ℵ‖L∞

∇

m�
i=1

��λi
��L1

∇

�−1

,

� ∑n−2

k=1
ck

1 −
∑n−2

k=1
ck

‖ℵ‖L∞
∇

m�
i=1

��λi
��L1

∇

�−1⎫⎪⎬⎪⎭
.
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where we take n = 4, m = 2, c1 =
1

2
, c2 =

1

3
, ζ1 =

1

3
, ζ2 =

1

4
 and λ(t) = λ1(t)λ2(t) in 

which

Then 
∑n−2

k=1
ck =

5

6
< 1 and δ1 = δ2 = (4∕3)1∕2. For � = 1, 2, 3, 4, let

for all r ∈ ℕ. Let

then

and

Therefore,

It is clear that

(12)
���
�
(t) + λ(t)�

�
(�

�+1(t)) = 0, t ∈ (0, σ(1)]
�

, � = 1, 2, 3, 4,

�5(t) = �1(t), t ∈ (0, σ(1)]
�

,

}

(13)��
�
(0) = 0, �

�
(1) =

1

2
�
�

(
1

3

)
+

1

3
�
�

(
1

4

)
,

λ1(t) =
1

|t − 1

4
| 1

2

and λ2(t) =
1

|t − 3

4
| 1

2

.

�
�
(�) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.05 × 10−4, � ∈ (10−4,+∞),
62×10−(4r+3)−0.05×10−4r

10−(4r+3)−10−4r
(� − 10−4r) + 0.05 × 10−8r,

� ∈

�
10−(4r+3), 10−4r

�
,

62 × 10−(4r+3), � ∈

�
1

5
× 10−(4r+3), 10−(4r+3)

�
,

62×10−(4r+3)−0.05×10−8r

0.05×10−(4r+3)−10−(4r+4)
(� − 10−(4r+4)) + 0.05 × 10−8r,

� ∈

�
10−(4r+4),

1

5
× 10−(4r+3)

�
,

0, � = 0,

tr =
31

64
−

r∑
k=1

1

4(k + 1)4
and ηr =

1

2
(tr + tr+1), r ∈ ℕ,

η1 =
15

32
−

1

648
<

15

32

tr+1 < ηr < tr, ηr >
1

5
.

ηr

a
=

ηr

1
>

1

5
, r ∈ ℕ.

t1 =
15

32
<

1

2
, tr − tr+1 =

1

4(r + 2)4
, r ∈ ℕ.



 M. Khuddush et al.

1 3

Since 
∞∑

j=1

1

j4
=

π4

90
 and 

∞∑
j=1

1

j2
=

π2

6
, it follows that

Also, we have

Thus, we get

Next, let 0 < � < 1 be fixed. Then λ1, λ2 ∈ L1+�[0, 1]. A simple calculations shows that

So, let pi = 1 for i = 1, 2. Then

and also ‖ℵ‖L∞
∇
= 1. Therefore,

Taking �1 =
1

10
. In addition if we take

then

θΛr = 61.35 × 10−(4r+3) <
1

10
× 10−4r = �1Γr, r ∈ ℕ and �

�
(� = 1, 2, 3, 4) satisfies the 

following growth conditions:

t∗ = lim
r→∞

tr =
31

64
−

∞∑
k=1

1

4(r + 1)4
=

47

64
−

π4

360
= 0.46.

∫
σ(a)−η1

η1

ℵ(τ, τ)Δτ = ∫
1−

15

32
+

1

648

15

32
−

1

648

(1 − τ)dτ = 0.03.

θ = max

{
1

0.0163
,

1

5 × 0.0163

}
= 61.35.

∫
σ(1)

0

λ1(t)λ2(t)dt = π − ln(7 − 4
√

3).

m�
i=1

��λi
��L

pi
∇

= π − ln(7 − 4
√

3) ≈ 5.78,

�1 <

�
‖ℵ‖∞

m�
i=1

��λi
��L

pi
∇

�−1

≈ 0.173.

Γr = 10−4r, Λr = 10−(4r+3),

Γr+1 = 10−(4r+4) <
1

5
× 10−(4r+3) <

ηr

a
Λr

< Λr = 10−(4r+3) < Γr = 10−4r,

�
�
(�) ≤�1Γr =

1

10
× 10−4r, � ∈

[
0, 10−4r

]
,

�
�
(�) ≥ θΛr = 61.35 × 10−(4r+3), � ∈

[
1

5
× 10−(4r+3), 10−(4r+3)

]
,
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for r ∈ ℕ. Then all the conditions of Theorem  3.3 are satisfied. Therefore, by Theo-
rem  3.3, the iterative boundary value problem (1) has infinitely many solutions 
{(�

[r]

1
, �

[r]

2
, �

[r]

3
, �

[r]

4
)}∞

r=1
 such that �[r]

�
(t) ≥ 0 on [0, 1],  � = 1, 2, 3, 4 and r ∈ ℕ.

Example 4.2 Let 𝕋 = {0} ∪ [1∕2, 1] ∪
{

1

2k+1
∶ k ∈ ℕ

}
. Consider the boundary value 

problem

where we take n = 3, m = 2, c1 =
1

5
, ζ1 =

1

4
 and λ(t) = λ1(t)λ2(t) in which

Then 
∑n−2

k=1
ck =

1

5
< 1 and δ1 = δ2 = (4∕3)1∕4. For � = 1, 2, 3, let

for all r ∈ ℕ.

Let tr, ηr be the same as in example 4.1. Then η1 =
15

32
−

1

648
<

15

32
, tr+1 < ηr < tr, ηr >

1

5
 

and t1 =
15

32
<

1

2
, tr − tr+1 =

1

4(r+2)4
, r ∈ ℕ. Also, 

t∗ = limr→∞ tr =
31

64
−
∑∞

i=1

1

4(i+1)4
=

47

64
−

π4

360
= 0.46. Also, we have

Thus, we get

By Lemma 2.4, we obtain

(14)
�Δ∇
�

(t) + λ(t)�
�
(�

�+1(t)) = 0, t ∈ (0, σ(1)]
�

, � = 1, 2, 3,

�4(t) = �1(t), t ∈ (0, σ(1)]
�

,

}

(15)��
�
(0) = 0, �

�
(1) =

1

5
�
�

(
1

4

)
,

λ1(t) =
1

|t − 2

5
|1∕4

and λ2(t) =
1

|t − 3

4
|1∕4

.

�
�
(�) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

5
× 10−9, � ∈ (10−9,+∞),

62×10−(8r+3)−
1

5
×10−(8r+1)

10−(8r+3)−10−(8r+1)
(� − 10−(8r+1)) +

1

5
× 10−(8r+1),

� ∈

�
10−(8r+3), 10−(8r+1)

�
,

62 × 10−(8r+3), � ∈

�
1

5
× 10−(8r+3), 10−(8r+3)

�
,

62×10−(8r+3)−
1

5
×10−(8r+4)

1

5
×10−(8r+3)−10−(8r+4)

(� − 10−(8r+4)) +
1

5
× 10−(8r+4),

� ∈

�
10−(8r+4),

1

5
× 10−(8r+3)

�
,

0, � = 0,

∫
σ(a)−η1

η1

ℵ(τ, τ)Δτ = ∫
1−

15

32
+

1

648

15

32
−

1

648

(1 − τ)dτ = 0.03.

θ = max

{
1

0.0161845
,

1

4 × 0.0161845

}
= 61.79.
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So, let pi = 1 for i = 1, 2. Then

and also ‖ℵ‖L∞
∇
= 1. Therefore,

Taking �1 =
1

3
. In addition, if we take

then

and �
�
(� = 1, 2, 3) satisfies the following growth conditions:

for r ∈ ℕ. Then all the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, 
the iterative boundary value problem (1) has infinitely many solutions {(�[r]

1
, �

[r]

2
, �

[r]

3
)}∞

r=1
 

such that �[r]
�
(t) ≥ 0 on [0, 1],  � = 1, 2, 3 and r ∈ ℕ.
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∫
σ(1)

0

λ1(t)λ2(t)dt = ∫
1

1

2

λ1(t)λ2(t)dt +

∞∑
k=1

[
σ
(

1

2k

)
−

1

2k

]
λ1

(
1

2k

)
λ2

(
1

2k

)

≈ 2.311909422

m∏
i=1

‖‖λi
‖‖L

pi
∇

≈ 2.311909422,

�1 <

�
‖ℵ‖∞

m�
i=1

��λi
��L

pi
∇

�−1

≈ 0.4325428974.

Γr = 10−8r and Λr = 10−(8r+3),

Γr+1 = 10−(8r+8) <
1

5
× 10−(8r+3) <

ηr

a
Λr < Λr = 10−(8r+3) < Γr = 10−8r,

θΛr = 61.79 × 10−(8r+3) <
1

3
× 10−8r = �1Γr, r ∈ ℕ

�
�
(�) ≤�1Γr =

1

3
× 10−8r, � ∈

[
0, 10−8r

]
,

�
�
(�) ≥ θΛr = 61.79 × 10−(8r+3), � ∈

[
1

5
× 10−(8r+3), 10−(8r+3)

]
,
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ABSTRACT

In this paper, we consider an iterative system of singular two-

point boundary value problems on time scales. By applying

Hölder’s inequality and Krasnoselskii’s cone fixed point the-

orem in a Banach space, we derive sufficient conditions for

the existence of infinitely many positive solutions. Finally,

we provide an example to check the validity of our obtained

results.

RESUMEN

En este art́ıculo, consideramos un sistema iterativo de pro-

blemas de valor en la frontera singulares de dos puntos en

escalas de tiempo. Aplicando la desigualdad de Hölder y

el teorema de punto fijo cónico de Krasnoselskii en un es-

pacio de Banach, derivamos condiciones suficientes para la

existencia de una cantidad infinita de soluciones positivas.

Finalmente, entregamos un ejemplo para verificar la validez

de nuestros resultados.
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1 Introduction

The theory of time scales was created to unify continuous and discrete analysis. Difference and

differential equations can be studied simultaneously by studying dynamic equations on time scales.

A time scale is any closed and nonempty subset of the real numbers. So, by this theory, we can

extend known results from continuous and discrete analysis to a more general setting. As a

matter of fact, this theory allows us to consider time scales which possess hybrid behaviours (both

continuous and discrete). These types of time scales play an important role for applications, since

most of the phenomena in the environment are neither only discrete nor only continuous, but

they possess both behaviours. Moreover, basic results on this issue have been well documented

in the articles [1, 2] and the monographs of Bohner and Peterson [6, 7]. There is a great deal of

research activity devoted to existence of solutions to the dynamic equations on time scales, see for

example [8, 9, 13, 16–19] and references therein.

In [14], Liang and Zhang studied countably many positive solutions for nonlinear singular m–point

boundary value problems on time scales,

(

ϕ(υ∆(t))
)∇

+ a(t)f
(

υ(t)
)

= 0, t ∈ [0,T]T,

υ(0) =

m−2
∑

i=1

aiυ(ξi), υ∆(T) = 0,

by using the fixed-point index theory and a new fixed-point theorem in cones.

In [12], Khuddush, Prasad and Vidyasagar considered second order n-point boundary value problem

on time scales,

υ
∆∇
i (t) + λ(t)gℓ

(

υi+1(t)
)

= 0, 1 ≤ i ≤ n, t ∈ (0,σ(a)]T,

υn+1(t) = υ1(t), t ∈ (0,σ(a)]T,

υ
∆
i (0) = 0, υi(σ(a)) =

n−2
∑

k=1

ckυi(ζk), 1 ≤ i ≤ n,

and established existence of positive solutions by applying Krasnoselskii’s fixed point theorem.

Inspired by the aforementioned works, in this paper by applying Hölder’s inequality and Kras-

noselskii’s cone fixed point theorem in a Banach space, we establish the existence of infinitely

many positive solutions for the iterative system of two-point boundary value problems with n–

singularities on time scales,

υ
∆∆
ℓ (t) + λ(t)gℓ

(

υℓ+1(t)
)

= 0, 1 ≤ ℓ ≤ m, t ∈ (0,T)T,

υm+1(t) = υ1(t), t ∈ (0,T)T,







(1.1)

υℓ(0) = υ
∆
ℓ (0), 1 ≤ ℓ ≤ m,

υℓ(T) = −υ
∆
ℓ (T), 1 ≤ ℓ ≤ m,







(1.2)
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where m ∈ N, λ(t) =
∏k

i=1 λi(t) and each λi(t) ∈ Lpi

∆([0,T]T) (pi ≥ 1) has n–singularities in the

interval (0,T)
T
.

We assume the following conditions are true throughout the paper:

(H1) gℓ : [0,+∞) → [0,+∞) is continuous.

(H2) lim
t→ti

λi(t) = ∞, where 0 < tn < tn−1 < · · · < t1 < T.

2 Preliminaries

In this section, we introduce some basic definitions and lemmas which are useful for our later

discussions.

Definition 2.1 ( [6]). A time scale T is a nonempty closed subset of the real numbers R. T has

the topology that it inherits from the real numbers with the standard topology. It follows that the

jump operators σ, ρ : T → T, and the graininess µ : T → [0,+∞) are defined by

σ(t) = inf{τ ∈ T : τ > t},

ρ(t) = sup{τ ∈ T : τ < t},

and

µ(t) = σ(t)− t,

respectively.

• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t,

σ(t) = t, σ(t) > t, respectively.

• If T has a right-scattered minimum m, then Tκ = T\{m}; otherwise Tκ = T.

• If T has a left-scattered maximum m, then T
κ = T\{m}; otherwise T

κ = T.

• A function f : T → R is called rd-continuous provided it is continuous at right-dense points in T

and its left-sided limits exist (finite) at left-dense points in T. The set of all rd-continuous functions

f : T → R is denoted by Crd = Crd(T) = Crd(T,R).

• A function f : T → R is called ld-continuous provided it is continuous at left-dense points in

T and its right-sided limits exist (finite) at right-dense points in T. The set of all ld-continuous

functions f : T → R is denoted by Cld = Cld(T) = Cld(T,R).

• By an interval time scale, we mean the intersection of a real interval with a given time scale, i.e.,

[a, b]T = [a, b] ∩ T. Other intervals can be defined similarly.
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Definition 2.2 ([5,11]). Let µ∆ and µ∇ be the Lebesgue ∆−measure and the Lebesgue ∇−measure

on T, respectively. If A ⊂ T satisfies µ∆(A) = µ∇(A), then we call A measurable on T, denoted

µ(A) and this value is called the Lebesgue measure of A. Let P denote a proposition with respect

to t ∈ T.

(i) If there exists Γ1 ⊂ A with µ∆(Γ1) = 0 such that P holds on A\Γ1, then P is said to hold

∆–a.e. on A.

(ii) If there exists Γ2 ⊂ A with µ∇(Γ2) = 0 such that P holds on A\Γ2, then P is said to hold

∇–a.e. on A.

Definition 2.3 ( [4, 5]). Let E ⊂ T be a ∆−measurable set and p ∈ R̄ ≡ R ∪ {−∞,+∞} be such

that p ≥ 1 and let f : E → R̄ be a ∆−measurable function. We say that f belongs to Lp
∆(E)

provided that either
∫

E

|f |p(s)∆s < ∞ if p ∈ [1,+∞),

or there exists a constant M ∈ R such that

|f | ≤ M, ∆− a.e. on E if p = +∞.

Lemma 2.4 ( [20]). Let E ⊂ T be a ∆−measurable set. If f : T → R is ∆−integrable on E, then

∫

E

f(s)∆s =

∫

E

f(s)ds+
∑

i∈IE

(

σ(ti)− ti
)

f(ti) + r(f, E),

where

r(f, E) =















µN(E)f(M), if N ∈ T,

0, if N /∈ T,

IE := {i ∈ I : ti ∈ E} and {ti}i∈I , I ⊂ N, is the set of all right-scattered points of T.

Lemma 2.5. For any y(t) ∈ Crd([0,T]T), the boundary value problem,

υ∆∆
1 (t) + y(t) = 0, t ∈ (0,T)T, (2.1)

υ1(0) = υ∆
1 (0), υ1(T) = −υ∆

1 (T), (2.2)

has a unique solution

υ1(t) =

∫ T

0

ℵ(t, τ)y(τ)∆τ, (2.3)

where

ℵ(t, τ) = 1

2 + T







(T− t+ 1)(σ(τ) + 1), if σ(τ) < t,

(T− σ(τ) + 1)(t+ 1), if t < τ.
(2.4)
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Proof. Suppose υ1 is a solution of (2.1), then

υ1(t) = −
∫ t

0

∫

τ

0

y(τ1)∆τ1∆τ+A1t+A2

= −
∫ t

0

(t− σ(τ))y(τ)∆τ+A1t+A2,

where A1 = υ∆
1 (0) and A2 = υ1(0). By the conditions (2.2), we get

A1 = A2 =
1

2 + T

∫ T

0

(T− σ(τ) + 1)y(τ)∆τ.

So, we have

υ1(t) =

∫ t

0

(t− σ(τ))y(τ)∆τ+
1

2 + T

∫ T

0

(T − σ(τ) + 1)(1 + t)y(τ)∆τ

=

∫ T

0

ℵ(t, τ)y(τ)∆τ.

This completes the proof.

Lemma 2.6. Suppose (H1)–(H2) hold. For ε ∈ (0, T

2 )T, let G(ε) =
ε+ 1

T+ 1
< 1. Then ℵ(t, τ) has

the following properties:

(i) 0 ≤ ℵ(t, τ) ≤ ℵ(τ, τ) for all t, τ ∈ [0, 1]T,

(ii) G(ε)ℵ(τ, τ) ≤ ℵ(t, τ) for all t ∈ [ε,T− ε]T and τ ∈ [0, 1]T.

Proof. (i) is evident. To prove (ii), let t ∈ [ε,T− ε]T and t ≤ τ. Then

ℵ(t, τ)
ℵ(τ, τ) =

t+ 1

τ+ 1
≥ ε+ 1

T+ 1
= G(ε).

For τ ≤ t,
ℵ(t, τ)
ℵ(τ, τ) =

T− t+ 1

T− τ+ 1
≥ ε+ 1

T+ 1
= G(ε).

This completes the proof.

Notice that an m−tuple (υ1(t),υ2(t),υ3(t), . . . ,υm(t)) is a solution of the iterative boundary value

problem (1.1)–(1.2) if and only if

υℓ(t) =

∫ 1

0

ℵ(t, τ)λ(τ)gℓ(υℓ+1(τ))∆τ, t ∈ (0,T)T, 1 ≤ ℓ ≤ m,

υm+1(t) =υ1(t), t ∈ (0,T)T,

i.e.,

υ1(t) =

∫ 1

0

ℵ(t, τ1)λ(τ1)g1
(
∫ 1

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ 1

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ 1

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1.
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Let B be the Banach space Crd((0,T)T,R) with the norm ‖υ‖ = max
t∈(0,T)T

|υ(t)|. For ε ∈
(

0, T

2

)

T
, we

define the cone Kε ⊂ B as

Kε =

{

υ ∈ B : υ(t) is nonnegative and min
t∈[ε,T−ε]T

υ(t) ≥ G(ε)‖υ(t)‖
}

.

For any υ1 ∈ Kε, define an operator Ω : Kε → B by

(Ωυ1)(t) =

∫ 1

0

ℵ(t, τ1)λ(τ1)g1
(
∫ 1

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ 1

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ 1

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1.

Lemma 2.7. Assume that (H1)–(H2) hold. Then for each ε ∈
(

0, T

2

)

T
, Ω(Kε) ⊂ Kε and Ω : Kε →

Kε are completely continuous.

Proof. From Lemma 2.6, ℵ(t, τ) ≥ 0 for all t, τ ∈ (0,T)T. So, (Ωυ1)(t) ≥ 0. Also, for υ1 ∈ Kε, we

have

‖Ωυ1‖ = max
t∈(0,T)T

∫ 1

0

ℵ(t, τ1)λ(τ1)g1
(
∫ 1

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ 1

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ 1

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1

≤
∫ 1

0

ℵ(τ1, τ1)λ(τ1)g1
(
∫ 1

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ 1

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ 1

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1.

Again from Lemma 2.6, we get

min
t∈[ε,T−ε]T

{

(Ωυ1)(t)
}

≥ G(ε)
∫ 1

0

ℵ(τ1, τ1)λ(τ1)g1
(
∫ 1

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ 1

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ 1

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1.

It follows from the above two inequalities that

min
t∈[ε,T−ε]T

{

(Ωυ1)(t)
}

≥ G(ε)‖Ωυ1‖.

So, Ωυ1 ∈ Kε and thus Ω(Kε) ⊂ Kε. Next, by standard methods and the Arzela-Ascoli theorem, it

can be proved easily that the operator Ω is completely continuous. The proof is complete.

3 Infinitely many positive solutions

For the existence of infinitely many positive solutions for iterative system of boundary value prob-

lem (1.1)–(1.2), we apply following theorems.

Theorem 3.1 ( [10]). Let E be a cone in a Banach space X and let M1, M2 be open sets with

0 ∈ M1, M1 ⊂ M2. Let A : E ∩ (M2\M1) → E be a completely continuous operator such that
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(a) ‖Av‖ ≤ ‖v‖, v ∈ E ∩ ∂M1, and ‖Av‖ ≥ ‖v‖, v ∈ E ∩ ∂M2, or

(b) ‖Av‖ ≥ ‖v‖, v ∈ E ∩ ∂M1, and ‖Av‖ ≤ ‖v‖, v ∈ E ∩ ∂M2.

Then A has a fixed point in E ∩ (M2\M1).

Theorem 3.2 ( [7, 15]). Let f ∈ Lp
∇(J) with p > 1, g ∈ Lq

∆(J) with q > 1, and 1
p + 1

q = 1. Then

fg ∈ L1
∆(J) and ‖fg‖L1

∆
≤ ‖f‖Lp

∆
‖g‖Lq

∆
, where

‖f‖Lp

∆
:=











[

∫

J

|f |p(s)∆s
]

1
p

, p ∈ R,

inf
{

M ∈ R / |f | ≤ M ∆− a.e. on J
}

, p = ∞,

and J = [a, b)T.

Theorem 3.3 (Hölder’s inequality [3, 4, 15]). Let f ∈ Lpi

∆(J) with pi > 1, for i = 1, 2, . . . , n and
∑n

i=1
1
pi

= 1. Then
∏k

i=1 gi ∈ L1
∆(J) and

∥

∥

∥

∏k
i=1 gi

∥

∥

∥

1
≤

∏k
i=1 ‖gi‖pi

. Further, if f ∈ L1
∆(J) and

g ∈ L∞
∆ (J), then fg ∈ L1

∆(J) and ‖fg‖1 ≤ ‖f‖1‖g‖∞.

We need the following condition in the sequel:

(H3) There exists δi > 0 such that λi(t) > δi (i = 1, 2, . . . , n) for t ∈ [0,T]T.

Consider the following three possible cases for λi ∈ Lpi

∆(0,T)T :

n
∑

i=1

1

pi
< 1,

n
∑

i=1

1

pi
= 1,

n
∑

i=1

1

pi
> 1.

Firstly, we seek infinitely many positive solutions for the case

n
∑

i=1

1

pi
< 1.

Theorem 3.4. Suppose (H1)–(H3) hold, let {εr}∞r=1 be such that 0 < ε1 < T/2, ε ↓ t∗ and

0 < t∗ < tn. Let {Γr}∞r=1 and {Λr}∞r=1 be such that

Γr+1 < G(εr)Λr < Λr < θΛr < Γr, r ∈ N,

where

θ = max

{

[

G(ε1)
k
∏

i=1

δi

∫ T−ε1

ε1

ℵ(τ, τ)∆τ

]−1

, 1

}

.

Assume that gℓ satisfies

(C1) gℓ(υ) ≤ N1Γr ∀ t ∈ (0,T)T, 0 ≤ υ ≤ Γr, where

N1 <

[

‖ℵ‖Lq

∆

k
∏

i=1

‖λi‖Lpi
∆

]−1

,

(C2) gℓ(υ) ≥ θΛr ∀ t ∈ [εr,T− εr]T, G(εr)Λr ≤ υ ≤ Λr.
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Then the iterative boundary value problem (1.1)–(1.2) has infinitely many solutions

{(υ[r]
1 ,υ

[r]
2 , . . . ,υ

[r]
m )}∞r=1 such that υ

[r]
ℓ (t) ≥ 0 on (0,T)T, ℓ = 1, 2, . . . ,m and r ∈ N.

Proof. Let

M1,r = {υ ∈ B : ‖υ‖ < Γr}, M2,r = {υ ∈ B : ‖υ‖ < Λr},

be open subsets of B. Let {εr}∞r=1 be given in the hypothesis and we note that

t∗ < tr+1 < εr < tr <
T

2
,

for all r ∈ N. For each r ∈ N, we define the cone Kεr by

Kεr =
{

υ ∈ B : υ(t) ≥ 0, min
t∈[εr,T−εr ]T

υ(t) ≥ G(εr)‖υ(t)‖
}

.

Let υ1 ∈ Kεr ∩ ∂M1,r. Then, υ1(τ) ≤ Γr = ‖υ1‖ for all τ ∈ (0,T)T. By (C1) and for τm−1 ∈
(0,T)T, we have

∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm ≤
∫ T

0

ℵ(τm, τm)λ(τm)gm(υ1(τm))∆τm

≤ N1Γr

∫ T

0

ℵ(τm, τm)

k
∏

i=1

λi(τm)∆τm.

There exists a q > 1 such that
1

q
+

n
∑

i=1

1

pi
= 1. So,

∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm ≤ N1Γr

∥

∥ℵ
∥

∥

Lq

∆

∥

∥

∥

∥

∥

k
∏

i=1

λi

∥

∥

∥

∥

∥

L
pi
∆

≤ N1Γr‖ℵ‖Lq

∆

k
∏

i=1

‖λi‖Lpi
∆

≤ Γr.

It follows in similar manner (for τm−2 ∈ (0,T)T), that

∫ T

0

ℵ(τm−2, τm−1)λ(τm−1)gm−1

(
∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

∆τm−1

≤
∫ T

0

ℵ(τm−2, τm−1)λ(τm−1)gm−1(Γr)∆τm−1

≤
∫ T

0

ℵ(τm−1, τm−1)λ(τm−1)gm−1(Γr)∆τm−1

≤ N1Γr

∫ T

0

ℵ(τm−1, τm−1)

k
∏

i=1

λi(τm−1)∆τm−1

≤ N1Γr‖ℵ‖Lq

∆

k
∏

i=1

‖λi‖Lpi
∆

≤ Γr.
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Continuing with this bootstrapping argument, we get

(Ωυ1)(t) =

∫ T

0

ℵ(t, τ1)λ(τ1)g1
(
∫ T

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ T

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1

≤Γr.

Since Γr = ‖υ1‖ for υ1 ∈ Kεr ∩ ∂M1,r, we get

‖Ωυ1‖ ≤ ‖υ1‖. (3.1)

Let t ∈ [εr,T− εr]T. Then,

Λr = ‖υ1‖ ≥ υ1(t) ≥ min
t∈[εr,T−εr ]T

υ1(t) ≥ G(εr) ‖υ1‖ ≥ G(εr)Λr.

By (C2) and for τm−1 ∈ [εr,T− εr]T, we have

∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm ≥
∫ T−εr

εr

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

≥ G(εr)θΛr

∫ T−εr

εr

ℵ(τm, τm)λ(τm)∆τm

≥ G(εr)θΛr

∫ T−εr

εr

ℵ(τm, τm)
k
∏

i=1

λi(τm)∆τm

≥ G(ε1)θΛr

k
∏

i=1

δi

∫ T−ε1

ε1

ℵ(τm, τm)∆τm

≥ Λr.

Continuing with the bootstrapping argument, we get

(Ωυ1)(t) =

∫ T

0

ℵ(t, τ1)λ(τ1)g1
(
∫ T

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ T

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1

≥Λr.

Thus, if υ1 ∈ Kεr ∩ ∂K2,r, then

‖Ωυ1‖ ≥ ‖υ1‖. (3.2)

It is evident that 0 ∈ M2,k ⊂ M2,k ⊂ M1,k. From (3.1)–(3.2), it follows from Theorem 3.1 that the

operator Ω has a fixed point υ
[r]
1 ∈ Kεr ∩

(

M1,r\M2,r
)

such that υ
[r]
1 (t) ≥ 0 on (0,T)T, and r ∈ N.

Next setting υm+1 = υ1, we obtain infinitely many positive solutions {(υ[r]
1 ,υ

[r]
2 , . . . ,υ

[r]
m )}∞r=1 of

(1.1)–(1.2) given iteratively by

υℓ(t) =

∫ T

0

ℵ(t, τ)λ(τ)gℓ(υℓ+1(τ))∆τ, t ∈ (0,T)T, ℓ = m,m− 1, . . . , 1.

The proof is completed.
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For

n
∑

i=1

1

pi
= 1, we have the following theorem.

Theorem 3.5. Suppose (H1)–(H3) hold, let {εr}∞r=1 be such that 0 < ε1 < T/2, ε ↓ t∗ and

0 < t∗ < tn. Let {Γr}∞r=1 and {Λr}∞r=1 be such that

Γr+1 < G(εr)Λr < Λr < θΛr < Γr, r ∈ N,

where

θ = max

{

[

G(ε1)
k
∏

i=1

δi

∫ T−ε1

ε1

ℵ(τ, τ)∆τ

]−1

, 1

}

.

Assume that gℓ satisfies (C2) and

(C3) gj(υ) ≤ N2Γr ∀ t ∈ (0,T)T, 0 ≤ υ ≤ Γr, where

N2 < min







[

‖ℵ‖L∞

∆

k
∏

i=1

‖λi‖Lpi
∆

]−1

, θ







.

Then the iterative boundary value problem (1.1)–(1.2) has infinitely many solutions

{(υ[r]
1 ,υ

[r]
2 , . . . ,υ

[r]
m )}∞r=1 such that υ

[r]
ℓ (t) ≥ 0 on (0,T)T, ℓ = 1, 2, . . . ,m and r ∈ N.

Proof. For a fixed r, let M1,r be as in the proof of Theorem 3.4 and let υ1 ∈ Kεr ∩ ∂M2,r. Again

υ1(τ) ≤ Γr = ‖υ1‖,

for all τ ∈ (0,T)T. By (C3) and for τℓ−1 ∈ (0,T)T, we have

∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm ≤
∫ T

0

ℵ(τm, τm)λ(τm)gm(υ1(τm))∆τm

≤ N1Γr

∫ T

0

ℵ(τm, τm)

k
∏

i=1

λi(τm)∆τm

≤ N1Γr

∥

∥ℵ
∥

∥

L∞

∆

∥

∥

∥

∥

∥

k
∏

i=1

λi

∥

∥

∥

∥

∥

L
pi
∆

≤ N1Γr‖ℵ‖L∞

∆

k
∏

i=1

‖λi‖Lpi
∆

≤ Γr.
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It follows in similar manner (for τm−2 ∈ [0, 1]T), that

∫ T

0

ℵ(τm−2, τm−1)λ(τm−1)gm−1

(
∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

∆τm−1

≤
∫ T

0

ℵ(τm−2, τm−1)λ(τm−1)gm−1(Γr)∆τm−1

≤
∫ T

0

ℵ(τm−1, τm−1)λ(τm−1)gm−1(Γr)∆τm−1

≤ N1Γr

∫ T

0

ℵ(τm−1, τm−1)

k
∏

i=1

λi(τm−1)∆τm−1

≤ N1Γr‖ℵ‖L∞

∆

k
∏

i=1

‖λi‖Lpi
∆

≤ Γr.

Continuing with this bootstrapping argument, we get

(Ωυ1)(t) =

∫ T

0

ℵ(t, τ1)λ(τ1)g1
(
∫ T

0

ℵ(τ1, τ2)λ(τ2)g2
(
∫ T

0

ℵ(τ2, τ3) · · ·

× gm−1

(
∫ T

0

ℵ(τm−1, τm)λ(τm)gm(υ1(τm))∆τm

)

· · ·∆τ3

)

∆τ2

)

∆τ1

≤Γr.

Since Γr = ‖υ1‖ for υ1 ∈ Kεr ∩ ∂M1,r, we get

‖Ωυ1‖ ≤ ‖υ1‖. (3.3)

Now define M2,r = {υ1 ∈ B : ‖υ1‖ < Λr}. Let υ1 ∈ Kεr ∩ ∂M2,r and let τ ∈ [εr, T− εr]T. Then, the

argument leading to (3.2) can be done to the present case. Hence, the theorem.

Lastly, the case
n
∑

i=1

1

pi
> 1.

Theorem 3.6. Suppose (H1)–(H3) hold, let {εr}∞r=1 be such that 0 < ε1 < T/2, ε ↓ t∗ and

0 < t∗ < tn. Let {Γr}∞r=1 and {Λr}∞r=1 be such that

Γr+1 < G(εr)Λr < Λr < θΛr < Γr, r ∈ N,

where

θ = max

{

[

G(ε1)
k
∏

i=1

δi

∫ T−ε1

ε1

ℵ(τ, τ)∆τ

]−1

, 1

}

.

Assume that gℓ satisfies (C2) and

(C4) gj(υ) ≤ N3Γr ∀ t ∈ (0,T)T, 0 ≤ υ ≤ Γr, where N3 < min

{

[

‖ℵ‖L∞

∆

∏k
i=1 ‖λi‖L1

∆

]−1

, θ

}

.

Then the iterative boundary value problem (1.1)–(1.2) has infinitely many solutions

{(υ[r]
1 ,υ

[r]
2 , . . . ,υ

[r]
m )}∞r=1 such that υ

[r]
ℓ (t) ≥ 0 on (0,T)T, ℓ = 1, 2, . . . ,m and r ∈ N.

Proof. The proof is similar to the proof of Theorem 3.4. So, we omit the details here.
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4 Example

In this section, we present an example to check validity of our main results.

Example 4.1. Consider the following boundary value problem on T = R.

υ
′′
ℓ (t) + λ(t)gℓ(υℓ+1(t)) = 0, ℓ = 1, 2,

υ3(t) = υ1(t),







(4.1)

υℓ(0) = υ
′
ℓ(0),

υℓ(1) = −υ
′
ℓ(1),







(4.2)

where

λ(t) = λ1(t)λ2(t)

in which

λ1(t) =
1

|t− 1
4 |

1
2

and λ2(t) =
1

|t− 3
4 |

1
2

,

g1(υ) = g2(υ) =











































































1
5
× 10−4

, υ ∈ (10−4
,+∞),

25×10−(4r+3)
−

1
5
×10−4r

10−(4r+3)
−10−4r (υ− 10−4r)+

1
5
× 10−8r

, υ ∈
[

10−(4r+3)
, 10−4r

]

,

25× 10−(4r+3)
, υ ∈

(

1
5
× 10−(4r+3)

, 10−(4r+3)
)

,

25×10−(4r+3)
−

1
5
×10−8r

1
5
×10−(4r+3)

−10−(4r+4) (υ− 10−(4r+4))+

1
5
× 10−8r

, υ ∈
(

10−(4r+4)
,

1
5
× 10−(4r+3)

]

,

0, υ = 0.

Let

tr =
31

64
−

r
∑

k=1

1

4(k + 1)4
, εr =

1

2
(tr + tr+1), r = 1, 2, 3, . . . ,

then

ε1 =
15

32
− 1

648
<

15

32
,

and

tr+1 < εr < tr, εr >
1

5
.

Therefore,

G(εr) =
εr + 1

T+ 1
=

εr + 1

2
>

1

5
, r = 1, 2, 3, . . .

It is clear that

t1 =
15

32
<

1

2
, tr − tr+1 =

1

4(r + 2)4
, r = 1, 2, 3, . . .

Since
∞
∑

x=1

1

x4
=

π4

90
and

∞
∑

x=1

1

x2
=

π2

6
, it follows that

t∗ = lim
r→∞

tr =
31

64
−

∞
∑

k=1

1

4(r + 1)4
=

47

64
− π4

360
= 0.4637941914,
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λ1, λ2 ∈ Lp[0, 1] for all 0 < p < 2, and δ1 = δ2 = (4/3)
1/4

,

G(ε1) = 0.7336033951.

∫ T−ε1

ε1

ℵ(τ, τ)∆τ =

∫ 1− 15
32+

1
648

15
32−

1
648

(2 − τ)(1 + τ)

3
dτ = 0.04918197801.

Thus, we get

θ = max

{

[

G(ε1)
k
∏

i=1

δi

∫ T−ε1

ε1

ℵ(τ, τ)∇τ

]−1

, 1

}

= max

{

1

0.04166167167
, 1

}

= 24.00287746.

Next, let 0 < a < 1 be fixed. Then λ1, λ2 ∈ L1+a[0, 1] and 2
1+a

> 1 for 0 < a < 1. It follows that

k
∏

i=1

‖λi‖Lpi
∆

≈ π − ln(7 − 4
√
3),

and also ‖ℵ‖∞ = 2
3 . So, for 0 < a < 1, we have

N1 <

[

‖ℵ‖∞
k
∏

i=1

‖λi‖Lpi
∆

]−1

≈ 0.2597173925.

Taking N1 = 1
4 . In addition if we take

Γr = 10−4r, Λr = 10−(4r+3),

then

Γr+1 = 10−(4r+4) <
1

5
× 10−(4r+3) < G(εr)Λr < Λr = 10−(4r+3) < Γr = 10−4r,

θΛr = 24.00287746×10−(4r+3) < 1
4×10−4r = N1Γr, r = 1, 2, 3, . . . , and g1, g2 satisfy the following

growth conditions:

g1(υ) = g2(υ) ≤N1Γr =
1

4
× 10−4r, υ ∈

[

0, 10−4r
]

,

g1(υ) = g2(υ) ≥θΛr = 24.00287746× 10−(4r+3), υ ∈
[

1

5
× 10−(4r+3), 10−(4r+3)

]

.

Then all the conditions of Theorem 3.4 are satisfied. Therefore, by Theorem 3.4, the iterative

boundary value problem (1.1) has infinitely many solutions {(υ[r]
1 ,υ

[r]
2 )}∞r=1 such that υ

[r]
ℓ (t) ≥ 0

on [0, 1], ℓ = 1, 2 and r ∈ N.
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cations, Boston: Birkhäuser Boston, Inc., 2001.

[7] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Boston:
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ALMOST PERIODIC POSITIVE SOLUTIONS FOR A DELAYED

NONLINEAR DENSITY DEPENDENT MORTALITY NICHOLSON’S

BLOWFLIES MODEL ON TIME SCALES

K. R. PRASAD1, M. KHUDDUSH1, K. V. VIDYASAGAR1, §

Abstract. In this paper we discuss a nonlinear density dependent mortality Nicholson’s
blowflies equation with multiple pairs of time varying delays. By contraction mapping
theorem, we derived the necessary conditions for the existence of almost periodic posi-
tive solutions and by selecting suitable Lyapunov functionnal we study global asymptotic
stability of the addressed model. Finally, some numerical simulations are listed to show
the validity of our methods.

Keywords: Time scale, Nicholson’s blowflies model; almost periodic positive solution,
global asymptotic stability.

AMS Subject Classification: 34K14, 39A30, 34N05.

1. Introduction

The delay differential equation

ϑ′(t) = αϑ(t) + βϑ(t− τ)e−γϑ(t−τ), t ∈ R

describes a population of the Australian sheep blowfly proposed by Gurney [10] in 1980
and is agreed with the experimental data obtained by Nicholson [18] in 1954. Since this
equation explains Nicholson blowfly more accurately, the model and it’s modifications
have been now refereed to as the Nicholson’s blowflies model. The theory of Nicholson’s
blowflies model has made remarkable progress (see[6, 12, 17, 21] and references therein).
Recently, Qian and Wang [22], studied a nonlinear density dependent mortality Nicholson’s
blowflies equation with multiple pairs of time-varying delays

ϑ′(t) = a(t) + b(t)e−ϑ(t) +
m∑
j=1

βj(t)ϑ(t− hj(t))e−γj(t)ϑ(t−gj(t)), t ∈ R, (1)
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and by utilising differential inequality techniques and the fluctuation lemma, a delay-
independent criterion was determined to ensure the global asymptotic stability of the
model.

Many authors [1, 9] believe that the discrete time model governed by difference equations
are more appropriate than the continuous ones when the populations have non-overlapping
generations. Discrete time models can also provide efficient computational models of
continuous models for numerical simulations. Recently, Zhu [25] considered the following
discrete delayed Ricker model with survival rate,

ϑ(t+ 1) = γ(t)ϑ(t) + ϑ(τ(t))e
r(t)

[
1−ϑ(τ(t))

k(t)

]
, t ∈ Z+, (2)

and established global attractivity, extreme stability, and the periodicity of the solution
of the model.

The differential, difference and dynamic equations on time scales are three theories
which play important role for modeling in the environment. Among them, the theory
of dynamic equations on time scales is the most recent and was introduced by Stefan
Hilger in his PhD thesis in 1988 with three main features: unification, extension and
discretization. Since a time scale is any closed and nonempty subset of the real numbers
set, so we can extend known results from continuous and discrete analysis to a more
general setting. As a matter of fact, this theory allows us to consider time scales which
possess hybrid behaviours (both continuous and discrete). These types of time scales
play an important role for applications, since most of the phenomena in the environment
are neither only discrete nor only continuous, but they possess both behaviors [4, 5, 23].
Moreover, basic results on this issue have been well documented in the articles [2, 3]
and monographs of Bohner and Peterson [7, 8]. In the real world phenomena, since the
almost periodic variation of the environment plays a crucial role in many biological and
ecological dynamical systems and is more frequent and general than the periodic variation
of the environment. In this paper we systematically unify the existence of almost periodic
solutions for nonlinear density dependent mortality Nicholson’s blowflies equation with
multiple pairs of time varying delays modelled by ordinary differential equations and their
discrete analogues in the form of difference equations and to extend these results to more
general time scales. The concept of almost periodic time scales was proposed by Li and
Wang [13]. Based on this concept, some works have been done (see [14, 15, 16, 19, 20]).

Motivated by aforementioned works, in this paper we study almost periodic positive
solutions of a nonlinear density dependent mortality Nicholson’s blowflies equation with
multiple pairs of time-varying delays,

ϑ∆(t) = −a(t)ϑ(t) + b(t)e−ϑ(t) +

n∑
`=1

β`(t)ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t)), (3)

where t ∈ T (T is an arbitrary almost periodic time scale), a(t)ϑ(t)− b(t)e−ϑ(t) represents

the death rate of the population, β`(t)ϑ(t − h`(t)) e−γ`(t)ϑ(t−g`(t)) describes the time de-
pendent birth function which involves maturation delay h`(t) and incubation delay g`(t)
and gains the reproduces at its maximum rate 1

γ`(t)
, all parameter functions of (3) are

nonnegative, bounded positive almost periodic functions, and ` ∈ J := {1, 2, ..., n}. When
T = Z+, the model (3) is similar to the model (2).

For any bounded function f(t), we denote f+ = sup
t∈T

f(t), f− = inf
t∈T

f(t).

We assume the following conditions are true throughout the paper:
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(H1) We assume that the bounded almost periodic functions a(t), b(t), β`(t), g`(t), h`(t)
satisfy 0 < a− ≤ a(t) ≤ a+, 0 < b− ≤ b(t) ≤ b+, 0 < β−` ≤ β`(t) ≤ β+

` ,

0 < g−` ≤ g`(t) ≤ g
+
` , 0 < h−` ≤ h`(t) ≤ h

+
` for ` = 1, 2, 3, · · · , n.

(H2) The initial functions associated with equation (3) is given by

ϑ(t;ϕ) = ϕ(t) for t ∈ [−%∗, 0]T, %
∗ = max

{
max
`∈J

g+
` , max

`∈J
h+
`

}
where ϕ(·) denotes a real-valued bounded and continuous functions defined on
[−%∗, 0]T.

Due to biological reasons of the model (3), positive solutions are only meaningful. So, we
restrict our attention to positive solutions of equation (3).

2. Preliminaries

In this section, we introduce some definitions and state some preliminary results which
are useful in the sequel.

Definition 2.1. [7] A time scale T is a nonempty closed subset of the real numbers R.
T has the topology that it inherits from the real numbers with the standard topology. It
follows that the jump operators σ, ρ : T→ T, and the graininess µ : T→ [0,∞) are defined
by σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t} and µ(t) = ρ(t)− t, respectively.
• In this definition we put inf ∅ = supT and sup ∅ = inf T.
• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) <
t, σ(t) = t, σ(t) > t, respectively.
• A function f : T → R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of all
rd-continuous functions f : T→ R is denoted by Crd = Crd(T) = Crd(T,R).
• A function f : T → R is called ld-continuous provided it is continuous at left-dense
points in T and its right-sided limits exist (finite) at right-dense points in T. The set of
all ld-continuous functions f : T→ R is denoted by Cld = Cld(T) = Cld(T,R).
• By an interval time scale, we mean the intersection of a real interval with a given time
scale. i.e., [a, b]T = [a, b] ∩ T other intervals can be defined similarly.

Definition 2.2. [7] A function p : T → R is called regressive provided 1 + µ(t)p(t) 6= 0
for all t ∈ Tk; p : T → R is called positively regressive provided 1 + µ(t)p(t) > 0 for all
t ∈ Tk The set of all regressive and rd-continuous functions p : T → R will be denoted by
R = R(T,R) and the set of all positively regressive functions and rd-continuous functions
will be denoted by R+ = R+(T,R).

Definition 2.3. [7] If p is regressive function, then the generalized exponential function
ep is defined by

ep(t, s) = exp
{∫ t

s
ξµ(x)(p(x))∆x

}
with the cylinder transformation

ξh(z) =

{
Log(1 + hz)

h
, h 6= 0,

z, h = 0.

Lemma 2.1. [7] Assume that p, q : T→ R are two regressive functions; then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1; (ii) ep(t, s) = 1/ep(s, t) = e	p(s, t);
(iii) ep(t, s)ep(s, r) = ep(t, r); (iv) (ep(·, s))∆ = p(t)ep(t, s).
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Lemma 2.2. [7] Suppose that p ∈ R+, then

(i) ep(t, s) > 0 for all t, s ∈ T;
(ii) if p(t) ≤ q(t) for all t ≥ s, t, s ∈ T, then ep(t, s) ≤ eq(t, s) for all t ≥ s.

Lemma 2.3. [7] If p ∈ R and a, b, c ∈ T, then [ep(c, ·)]∆ = −p[ep(c, ·)]σ, and∫ b

a
p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Lemma 2.4. [7] Let p : T → R be right-dense continuous and regressive, a ∈ T and
ua ∈ R. Then the unique solution of the initial value problem

u∆(t) = p(t)u(t) + f(t), u(a) = ua

is given by

u(t) = er(t, a)ua +

∫ t

a
er(t, σ(s))f(s)∆s.

Lemma 2.5 ([7], Corollary 6.7, pp 257). Let p ∈ R+(T,R), p(t) ≥ 0, u(t) ∈ R and α ∈ R.
Then

u(t) ≤ α +

∫ t

t0

u(s)p(s)∆(s), ∀t ∈ T,

implies
u(t) ≤ αep(t, t0), ∀t ∈ T.

Definition 2.4. [13] A time scale T is called an almost periodic time scale if

Π := {τ ∈ R : t+ τ ∈ T,∀t ∈ T} 6= {0}.

Definition 2.5. [13] Let T be an almost periodic time scale. A function f ∈ C(T,R) is
said to be almost periodic on T, if, for any ε > 0, the set

E(ε, f) = {τ ∈ Π : |f(t+ τ)− f(t)| < ε,∀t ∈ T}
is relatively dense in T; that is, for any ε > 0, there exists a constant l(ε) > 0 such that
each interval of length l(ε) contains at least one τ ∈ E(ε, f) such that

|f(t+ τ)− f(t)| < ε, ∀t ∈ T.
The set E(ε, f) is called the ε−translation number of f(t). We denote the set of all such
functions by AP (T).

Lemma 2.6. [13] If f ∈ C(T,R) is an almost periodic function, then f is bounded on T.

Lemma 2.7. [13] If f, g ∈ C(T,R) are almost periodic functions, then f + g, fg are also
almost periodic.

Definition 2.6. [24] Let ϑ ∈ Rm and A(t) be an m ×m rd-continuous matrix on T; the
linear system

ϑ∆(t) = A(t)ϑ(t), t ∈ T, (4)

is said to admit an exponential dichotomy on T if there exist positive constants k,α,
projection P , and the fundamental solution matrix ϑ(t) of (4) satisfying

|ϑ(t)Pϑ−1(σ(τ))|0 ≤ ke	α(t,σ(τ)), τ, t ∈ T, t ≥ τ,

|ϑ(t)(I − P)ϑ−1(σ(s))|0 ≤ ke	α(σ(τ), t), τ, t ∈ T, t ≤ τ,

where | · |0 is a matrix norm on T; that is, if A = (aij)m×m, then we can take |A|0 =

(
∑m

i=1

∑m
j=1 |aij |2)1/2.
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Lemma 2.8. [13] If the linear system (4) admits an exponential dichotomy, then the
following system ϑ∆(t) = A(t)ϑ(t) + f(t), t ∈ T, has a solution as follows:

ϑ(t) =

∫ t

−∞
ϑ(t)Pϑ−1(σ(τ))f(τ)∆τ−

∫ +∞

t
ϑ(t)(I − P)ϑ−1(σ(τ))f(τ)∆τ,

where ϑ(t) is the fundamental solution matrix of (4).

Lemma 2.9. [13] Let A(t) be a regressive n× n matrix-valued function on T. Let t0 ∈ T
and ϑ0 ∈ Rn, then the initial value problem ϑ∆(t) = A(t)ϑ(t), ϑ(t0) = ϑ0 has a unique
solution ϑ(t) = eA(t, t0)ϑ0.

Lemma 2.10. [13] Let di(t) > 0 be a function on T such that −di(t) ∈ R+ for all t ∈ T
and min

1≤i≤m

{
inf
t∈T

di(t)
}
> 0. Then the linear system

ϑ∆(t) = diag
(
− d1(t),−d2(t), · · · ,−dm(t)

)
ϑ(t)

admits an exponential dichotomy on T.

3. Existence of the unique positive almost periodic solution

Let B = {ϑ(t) : ϑ ∈ C(T,R), ϑ(t) is almost periodic function} with norm

‖ϑ‖B = sup
t∈T
|ϑ(t)|.

Then B is a Banach space.

Theorem 3.1. Assume that (H1) and (H2) hold. Let M > m be two positive constants
satisfy

(i) M = (‖ϕ‖B + b∗)e+, b∗ = max
t∈[t0,+∞)T

∫ t

t0

b(τ)∆τ, e+ = max
t∈[t0,+∞)T

e
∫ t
t0

∑n
`=1 β`(s)∆s.

(ii)
1

a+

[
b−e−M +

n∑
`=1

β−` e
−γ+

` M

]
≥ m ≥ 1

a+

n∑
`=1

β−` e
−γ+

` M.

Then the solution ϑ(t) = ϑ(t, t0, ϕ) ≥ 0 for all t ∈ [t0,η(ϕ))T, of (3) satisfies

m ≤ ϑ(t) ≤M, t ∈ [t0,+∞)T.

Proof. Let ϑ(t) = ϑ(t, t0, ϕ) is a solution of (3) with the initial condition ϑ(t0) = ϕ, where
ϕ(·) denotes a real-valued bounded and continuous functions defined on [−%∗, 0]T. At first,
we prove that ϑ(t) ≤M, t ∈ [t0,η(ϕ))T, where [t0,η(ϕ))T is the maximal right interval of
existence of ϑ(t, t0, ϕ). For all t ∈ [t0,η(ϕ))T, let $(t) = max

t0−%≤τ≤t
ϑ(τ), we get

ϑ∆(t) = − a(t)ϑ(t) + b(t)e−ϑ(t) +
n∑
`=1

β`(t)ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t))

≤ b(t) +
n∑
`=1

β`(t)ϑ(t− h`(t)) ≤ b(t) +
n∑
`=1

β`(t)$(t).

So,

ϑ(t) ≤ϑ(t0) + b∗ +

∫ t

t0

[
n∑
`=1

β`(τ)$(τ)

]
∆τ

≤‖ϕ‖B + b∗ +

∫ t

t0

[
n∑
`=1

β`(τ)

]
$(τ)∆τ, t ∈ [t0,η(ϕ))T.

(5)
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Since (5) is true for every t ∈ [t0,η(ϕ))T and $(t) = max
t0−%≤τ≤t

ϑ(τ), it follows that

$(t) ≤ ‖ϕ‖B + b∗ +

∫ t

t0

[
n∑
`=1

β`(τ)

]
$(τ)∆τ, t ∈ [t0,η(ϕ))T.

Now by Lemma 2.5, we get

ϑ(t) ≤ $(t) ≤ (‖ϕ‖B + b∗) exp

{∫ t

t0

[
n∑
`=1

β`(τ)

]
∆τ

}
, t ∈ [t0,η(ϕ))T.

Thus,

ϑ(t) ≤M, t ∈ [t0,η(ϕ))T.

Next, we show that

m ≤ ϑ(t), t ∈ [t0,η(ϕ))T. (6)

To prove this claim, we show that for any λ < 1, the following inequality holds

ϑ(t) > λm, t ∈ [t0,η(ϕ))T. (7)

By way of contradiction, assume that (7) does not hold. Then, there exists t∗ ∈ [t0,η(ϕ))T
such that

ϑ(t∗) ≤ λm, ϑ(t) > λ, t ∈ [t0 − %, t∗)T.
Therefore, there must be a positive constant µ ≤ 1 such that

ϑ(t∗) = λµm, ϑ(t) > λµ, t ∈ [t0 − %, t∗)T.

Since λµ < 1, it follows that

0 ≥ ϑ∆(t∗) = −a(t∗)ϑ(t∗) + b(t∗)e−ϑ(t∗) +
n∑
`=1

β`(t
∗)ϑ(t∗ − h`(t∗))e−γ`(t

∗)ϑ(t∗−g`(t∗))

≥− a+λµm + b−e−M +
n∑
`=1

β−` λµe
−γ+

` M ≥ b−e−M − λµ

[
a+m−

n∑
`=1

β−` e
−γ+

` M

]

≥b−e−M −

[
a+m−

n∑
`=1

β−` e
−γ+

` M

]
> 0.

Which is a contradiction and hence (7) holds. Letting λ → 1, we get (6). Similar to the
proof of Theorem 2.3.1 in [11], we can obtain that η(ϕ) = +∞. Therefore,

m ≤ ϑ(t) ≤M, t ∈ [t0,+∞)T.

�

For $ ∈ B, consider the equation

ϑ∆(t) = −a(t)ϑ(t) + b(t)e−$(t) +
n∑
`=1

β`(t)$(t− h`(t))e−γ`(t)$(t−g`(t)). (8)

Since inft∈T a(t) = a− > 0, then from Lemma 2.10 the linear equation ϑ∆(t) = −a(t)ϑ(t)
admits exponential dichotomy on T. Hence, by Lemma 2.8, the equation (8) has exactly
one almost periodic solution,

ϑ$(t) =

∫ t

−∞
e−a(t,σ(τ))

[
b(τ)e−$(τ) +

n∑
`=1

β`(τ)$(τ− h`(τ))e−γ`(τ)$(τ−g`(τ))

]
∆τ.
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Define the operator ℵ : B → B,

(ℵ$)(t) =

∫ t

−∞
e−a(t,σ(τ))

[
b(τ)e−$(τ) +

n∑
`=1

β`(τ)$(τ− h`(τ))e−γ`(τ)$(τ−g`(τ))

]
∆τ.

It is clear that, $(t) is the almost periodic solution of equation (3) if and only if $ is the
fixed point of the operator ℵ.

For convenience, we take M = max
{∑n

`=1 β
+
` ‖ϕ‖Be

+, a+M
}
,

Theorem 3.2. Suppose that the hypothesis of Theorem 3.1 satisfied. Then equation (3)
has a unique almost periodic positive solution.

Proof. It is clear from the Theorem 3.1 that ℵ is self mapping on Ξ, where

Ξ =
{
$(t) ∈ B : m ≤ $(t) ≤M, t ∈ T

}
.

Next, we prove that ℵ is a contraction mapping on Ξ. For ϑ,$ ∈ Ξ, consider

‖ℵϑ− ℵ$‖B = sup
t∈T
|(ℵϑ)(t)− (ℵ$)(t)|

≤ sup
t∈T

{∫ t

−∞
e−a(t,σ(τ))

[
− b(τ)

(
e−ϑ(τ) − e−$(τ)

)
+

n∑
`=1

β`(τ)
([
ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))

]
+

∫ τ−h`(τ)

τ−g`(τ)
ϑ∆(s)e−γ`(τ)ϑ(τ−g`(τ))∆s−

∫ τ−h`(τ)

τ−g`(τ)
$∆(s)e−γ`(τ)$(τ−g`(τ))∆s

)]
∆τ

}
From Theorem 3.1, we note that

ϑ∆(t) ≤
n∑
`=1

β`(t)$(t) ≤
n∑
`=1

β`(t)‖ϕ‖B exp

{∫ t

t0

n∑
`=1

β`(s)∆s

}
≤

n∑
`=1

β+
` ‖ϕ‖Be

+,

and $∆(t) ≥ −a(t)$(t) ≥ −a+M. Therefore,

‖ℵϑ− ℵ$‖B ≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+
∣∣∣e−ϑ(τ) − e−$(τ)

∣∣∣
+

n∑
`=1

β+
`

∣∣∣ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))
∣∣∣

+
n∑
`=1

β+
`

[
g`(τ)− h`(τ)

]∣∣∣ n∑
`=1

β+
` ‖ϕ‖Be

+e−γ`(τ)ϑ(τ−g`(τ)) − (d+ + a+M)e−γ`(τ)$(τ−g`(τ))
∣∣∣]∆τ

≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+
∣∣∣e−ϑ(τ) − e−$(τ)

∣∣∣
+

n∑
`=1

β+
`

∣∣∣ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))
∣∣∣

+
n∑
`=1

β+
`

[
g`(τ)− h`(τ)

]
M
∣∣∣e−γ`(τ)ϑ(τ−g`(τ)) − e−γ`(τ)$(τ−g`(τ))

∣∣∣]∆τ.
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By mean value theorem, we have
∣∣e−ϑ(τ) − e−$(τ)

∣∣ ≤ e−ξ1
∣∣ϑ(τ) − $(τ)

∣∣ where ξ1 lies
between ϑ(τ) and $(τ),∣∣∣ϑ(τ− g`(τ))e−γ`(τ)ϑ(τ−g`(τ)) −$(τ− g`(τ))e−γ`(τ)$(τ−g`(τ))

∣∣∣
≤ (1− γ`ξ2)e−γ

−
` ξ2
∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))

∣∣∣,
where ξ2 lies between ϑ(τ− g`(τ)) and $(τ− g`(τ)), and∣∣∣e−γ`(τ)ϑ(τ−g`(τ)) − e−γ`(τ)$(τ−g`(τ))

∣∣∣ ≤ γ+
` e
−γ−` ξ3

∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))
∣∣∣,

where ξ3 lies between ϑ(τ− g`(τ)) and $(τ− g`(τ)).
Hence,

‖ℵϑ− ℵ$‖B ≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+e−ξ1

∣∣ϑ(τ)−$(τ)
∣∣

+
n∑
`=1

β+
` (1− γ`ξ2)e−γ

−
` ξ2
∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))

∣∣∣
+M

n∑
`=1

β+
`

[
g`(τ)− h`(τ)

]
γ+
` e
−γ−` ξ3

∣∣∣ϑ(τ− g`(τ))−$(τ− g`(τ))
∣∣∣]∆τ

≤ sup
t∈T

∫ t

−∞
e−a(t,σ(τ))

[
b+e−ξ1 +

n∑
`=1

β+
` (1− γ−` ξ2)e−γ

−
` ξ2

+M
n∑
`=1

β+
` g

+
` γ

+
` e
−γ−` ξ3

]
∆τ ‖ϑ−$‖B

≤ 1

a−

[
b+e−ξ1 +

n∑
`=1

β+
` (1− γ−` ξ2)e−γ

−
` ξ2 +M

n∑
`=1

β+
` g

+
` γ

+
` e
−γ−` ξ3

]
‖ϑ−$‖B

Since
1

a−

[
b+e−ξ1 +

n∑
`=1

β+
` (1− γ−` ξ2)e−γ

−
` ξ2 +M

n∑
`=1

β+
` g

+
` γ

+
` e
−γ−` ξ3

]
< 1, it follows that

ℵ is a contraction mapping. Thus, by the contraction mapping fixed point theorem, the
operator ℵ has a unique fixed point ϑ∗ in Ξ. This implies that the equation (3) has a
unique almost periodic positive solution ϑ∗(t) and m ≤ ϑ∗(t) ≤M. �

For convenience, we take

Γ = 2

[
b− −

n∑
`=1

β+
` −M

n∑
`=1

β+
` γ
−
` −M

n∑
`=1

β+
` g

+
` γ

+
`

]

×
[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]−2

.

Theorem 3.3. Suppose that the hypothesis of the Theorem 3.2 is satisfied and for any
t0 ∈ [−%∗,+∞)T, ∫ t

t0

(Γ− µ(τ))∆τ→ +∞ as t→ +∞.

Then equation (3) has unique globally asymptotically stable almost periodic positive solu-
tion.
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Proof. By Theorem 3.2, we know that (3) has a unique almost periodic positive solution
ϑ∗(t), and m ≤ ϑ∗(t) ≤ M. Suppose ϑ(t) is any arbitrary solution of (8) with initial
function ϕ(t) > 0, t ∈ [%∗, 0]T. Now we prove that ϑ∗(t) is globally asymptotically stable.

Let $(t) = ϑ(t)− ϑ∗(t) and define V($) = $2. Then, we have

V∆($) = 2$(t)$∆(t) + µ(t)($∆(t))2

= 2$
[
− a(t)

(
ϑ(t)− ϑ∗(t)

)
+ b(t)

(
e−ϑ(t) − e−ϑ∗(t)

)
+

n∑
`=1

β`(t)
(
ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t)) − ϑ∗(t− h`(t))e−γ`(t)ϑ

∗(t−g`(t))
) ]

+ µ(t)

[
− a(t)

(
ϑ(t)− ϑ∗(t)

)
+ b(t)

(
e−ϑ(t) − e−ϑ∗(t)

)
+

n∑
`=1

β`(t)
(
ϑ(t− h`(t))e−γ`(t)ϑ(t−g`(t)) − ϑ∗(t− h`(t))e−γ`(t)ϑ

∗(t−g`(t))
)]2

Similar argument employed in Theorem 3.2 yields,

V∆($) =2

[
−b− +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]
‖$‖B

+ µ(t)

[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]2

‖$‖B

=−

[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]2 [
Γ− µ(t)

]
‖$‖B.

Let Ω(ϑ) =

[
b+ +

n∑
`=1

β+
` + M

n∑
`=1

β+
` γ
−
` +M

n∑
`=1

β+
` g

+
` γ

+
`

]2

ϑ2, then

V∆($(t)) ≤ −
[
Γ− µ(t)

]
Ω(‖ϑ‖B).

Integrating from t0 to t, we obtain

V($(t)) ≤ V($(t0))−
∫ t

t0

[
Γ− µ(τ)

]
Ω(‖ϑ‖B)∆τ.

So, we get∫ t

t0

[
Γ− µ(τ)

]
Ω(‖ϑ‖B)∆τ ≤ V($(t0))− V($(t)) < V($(t0)) < +∞.

Since ∫ t

t0

(Γ− µ(τ))∆τ→ +∞ as t→ +∞,

it follows that

Ω(‖ϑ‖B)→ 0, i.e., ‖ϑ(t)− ϑ∗(t)‖B → 0.

Hence, ϑ∗(t) is globally asymptotically stable. �
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4. Examples

Example 4.1. Consider following nonlinear density dependent mortality Nicholson’s blowflies
model for T = R.

ϑ∆(t) =− (2 + sin(2t))ϑ(t) + | cos(t)|e−ϑ(t)

+ | sin(t)|ϑ
(
t− 2ecos(

√
2t)
)
e
−(2+sin(t))ϑ

(
t−(4+2esin(

√
2t))
)
,

ϑ(0) = 0.1.

 (9)

It is clear that (9) satisfies all the assumptions of Theorem 3.3. Therefore, equation
(9) has a unique almost periodic positive solution ϑ∗(t) which is globally asymptotically
stable. The numerical simulations in Fig. 1 strongly support the conclusion.

Example 4.2. Consider following nonlinear density dependent mortality Nicholson’s blowflies
model for T = Z+.

ϑ(t+ 1) =ϑ(t)− (1 + cos t)ϑ(t) + | sin(t)|e−ϑ(t)

+ | sin(t)|ϑ
(
t− esin(

√
2t)
)
e
−(2+sin(t))ϑ

(
t−(4+2ecos(

√
2t))
)
,

ϑ(0) = 0.05.

 (10)

It is clear that (10) satisfies all the assumptions of Theorem 3.3. Therefore, equation
(10) has a unique almost periodic positive solution ϑ∗(t) which is globally asymptotically
stable. The numerical simulations in Fig. 2 strongly support the conclusion.

Figure 1. Numerical solution ϑ(t) of equation (9) for initial value ϕ(τ) =
0.1, 0.3, 0.5 τ ∈ [−(4 + 2e), 0].
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Figure 2. Numerical solution ϑ(t) of equation (9) for initial value ϕ(τ) =
0.3, 0.8, 1 τ ∈ [−(4 + 2e), 0].
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DENUMERABLY MANY POSITIVE SOLUTIONS FOR ITERATIVE
SYSTEM OF BOUNDARY VALUE PROBLEMS WITH

N-SINGULARITIES ON TIME SCALES

K. R. PRASAD1, MAHAMMAD KHUDDUSH2, AND K. V. VIDYASAGAR3

Abstract. In this paper we consider a iterative system of two-point boundary value
problems with integral boundary conditions having n singularities and involve an
increasing homeomorphism, positive homomorphism operator. By applying Hölder’s
inequality and Krasnoselskii’s cone fixed point theorem in a Banach space, we
derive sufficient conditions for the existence of denumerably many positive solutions.
Finally we provide an example to check validity of our obtained results.

1. Introduction

Theory of time scales was created to unify continuous and discrete analysis. Differ-
ence and differential equations can be studied simultaneously by studying dynamic
equations on time scales. Since a time scale is any closed and nonempty subset of the
real numbers set. So, by this theory, we can extend known results from continuous
and discrete analysis to a more general setting. As a matter of fact, this theory allows
us to consider time scales which possess hybrid behaviours (both continuous and dis-
crete). These types of time scales play an important role for applications, since most
of the phenomena in the environment are neither only discrete nor only continuous,
but they possess both behaviours. Moreover, basic results on this issue have been
well documented in the articles [1, 2] and monographs of Bohner and Peterson [7, 8].

The study of turbulent flow through porous media is important for a wide range
of scientific and engineering applications such as fluidized bed combustion, compact

Key words and phrases. Iterative system, time scale, singularity, homeomorphism, homomorphism,
cone, Krasnoselskii’s fixed point theorem, positive solutions.
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heat exchangers, combustion in an inert porous matrix, high temperature gas-cooled
reactors, chemical catalytic reactors [9] and drying of different products such as iron
ore [15]. To study such type of problems, Leibenson [13] introduced the following
p-Laplacian equation (

ϕp($′(t))
)′

= f
(
t,$(t), $′(t)

)
,

where ϕp($) = |$|p−2$, p > 1, is the p-Laplacian operator its inverse function is
denoted by ϕq(τ), with ϕq(τ) = |τ|q−2τ and p, q satisfy 1

p
+ 1

q
= 1. It is well known fact

that the p-Laplacian operator and fractional calculus arises from many applied fields
such as turbulant filtration in porous media, blood flow problems, rheology, modelling
of viscoplasticity, material science, it is worth studying the fractional differential
equations with p-Laplacian operator.

In this paper, we consider an operator ϕ called increasing homeomorphism and
positive homomorphism operator (IHPHO), which generalizes and improves the p-
Laplacian operator for some p > 1 and ϕ is not necessarily odd. Liang and Zhang [14]
studied countably many positive solutions for nonlinear singular m–point boundary
value problems on time scales with IHPHO,(

ϕ($∆(t))
)∇

+ a(t)f
(
$(t)

)
= 0, t ∈ [0, T ]T,

$(0) =
m−2∑
i=1

ai$(ξi), $∆(T ) = 0,

by using the fixed-point index theory and a new fixed-point theorem in cones.
In [10], Dogan considered second order p-boundary value problem on time scales,(

ϕp($∆(t))
)∇

+ω(t)f
(
t,$(t)

)
= 0, t ∈ [0, T ]T,

$(0) =
m−2∑
i=1

ai$(ξi), ϕp($∆(T )) =
m−2∑
i=1

biϕp($∆(ξi)),

and established existence of multiple positive solutions by applying fixed-point index
theory.

Inspired by aforementioned works, in this paper by applying Hölder’s inequality and
Krasnoselskii’s cone fixed point theorem in a Banach space, we establish the existence
of denumerably many positive solutions for dynamical iterative system of two-point
boundary value problem with n singularities and involving IHPHO on time scales,

(1.1)
ϕ
(
$∆∇
j (t)

)
+ χ(t)fj

(
$j+1(t)

)
= 0, 1 ≤ j ≤ `, t ∈ [0, 1]T,

$`+1(t) = $1(t), t ∈ [0, 1]T,



(1.2)
α$j(0)− β$∆

j (0) =
∫ 1

0
κ1(τ)$j(τ)∇τ, 1 ≤ j ≤ `,

γ$j(1) + δ$∆
j (1) =

∫ 1

0
κ2(τ)$j(τ)∇τ, 1 ≤ j ≤ `,
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where ` ∈ N, χ(t) = ∏n
i=1 χi(t) and each χi(t) ∈ Lpi

∇([0, 1]T), pi ≥ 1, has a singularity
in the interval

(
0, 1

2

)
T
and ϕ : R→ R is an IHPHO with ϕ(0) = 0.

A projection ϕ : R → R is called a IHPHO, if the following three conditions are
fulfilled:

(a) ϕ(τ1) ≤ ϕ(τ2) whenever τ1 ≤ τ2, for any real numbers τ1, τ2;
(b) ϕ is a continuous bijection and its inverse ϕ−1 is continuous;
(c) ϕ(τ1τ2) = ϕ(τ1)ϕ(τ2) for any real numbers τ1, τ2.

We use following notations in the entire paper: i = 1, 2, z ∈ (0, 1/2)T,
a(t) = γ+ δ− γt, b(t) = β+ αt, d = αγ+ αδ+ βγ,

ℵ0(t, τ) = 1
d

{
a(τ)b(t), t ≤ τ,
a(t)b(τ), τ ≤ t,

ci =
∫ 1

0

[∫ 1

0
ℵ0(τ1, τ2)κi(τ1)∇τ1

]
χ(τ2)∇τ2,

ua = 1
d

∫ 1

0
κ1(τ)a(τ)∇τ, ub = 1

d

∫ 1

0
κ1(τ)b(τ)∇τ, κ∗i =

∫ 1

0
κi(τ)∇τ,

va = 1
d

∫ 1

0
κ2(τ)a(τ)∇τ, vb = 1

d

∫ 1

0
κ2(τ)b(τ)∇τ, κi(z) =

∫ 1−z

z
κi(τ)∇τ,

η(t) = (1− vb)a(t) + vab(t)
d[(1− ua)(1− vb)− ubva]

, λ(t) = (1− ua)b(t) + uba(t)
d[(1− ua)(1− vb)− ubva]

,

η∗ = max
t∈[0,1]T

η(t), η(z) = max
t∈[z,1−z]T

η(t), λ∗ = max
t∈[0,1]T

λ(t), λ(z) = max
t∈[z,1−z]T

λ(t).

We assume the following conditions are true in the entire paper:
(H1) fj : [0,+∞)→ [0,+∞) and κ1, κ2 : [0, 1]T → [0,+∞) are continuous;
(H2) there exists a sequence {tr}∞r=1 such that 0 < tr+1 < tr <

1
2 ,

lim
r→∞

tr = t∗ <
1
2 , lim

t→tr
χi(t) = +∞, i = 1, 2, . . . , n, r ∈ N,

and each χi(t) does not vanish identically on any subinterval of [0, 1]T.Moreover,
there exists δi > 0 such that

δi < ϕ−1 (χi(t)) <∞ a.e. on [0, 1]T, i = 1, 2, . . . , n.

2. Preliminaries

In this section, we introduce some basic definitions and lemmas which are useful for
our later discussions; for details, see [3–5,7, 12, 17,18].

Definition 2.1. A time scale T is a nonempty closed subset of the real numbers R.
T has the topology that it inherits from the real numbers with the standard topology.
It follows that the jump operators σ, ρ : T → T, and the graininess µ : T → R+ are
defined by σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t} and µ(t) = ρ(t)− t,
respectively.
• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, σ(t) > t, respectively.
• If T has a right-scattered minimum m, then Tk = T\{m}. Otherwise, Tk = T.
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• If T has a left-scattered maximum m, then Tk = T\{m}. Otherwise, Tk = T.
• A function f : T→ R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
all rd-continuous functions f : T→ R is denoted by Crd = Crd(T) = Crd(T,R).
• A function f : T→ R is called ld-continuous provided it is continuous at left-dense
points in T and its right-sided limits exist (finite) at right-dense points in T. The set
of all ld-continuous functions f : T→ R is denoted by Cld = Cld(T) = Cld(T,R).
• By an interval time scale, we mean the intersection of a real interval with a given
time scale, i.e., [a, b]T = [a, b] ∩ T other intervals can be defined similarly.
Definition 2.2. Let µ∆ and µ∇ be the Lebesgue ∆-measure and the Lebesgue ∇-
measure on T, respectively. If A ⊂ T satisfies µ∆(A) = µ∇(A), then we call A is
measurable on T, denoted µ(A) and this value is called the Lebesgue measure of A.
Let P denote a proposition with respect to t ∈ T.

(i) If there exists Γ1 ⊂ A with µ∆(Γ1) = 0 such that P holds on A\Γ1, then P is
said to hold ∆-a.e. on A.

(ii) If there exists Γ2 ⊂ A with µ∇(Γ2) = 0 such that P holds on A\Γ2, then P is
said to hold ∇-a.e. on A.

Definition 2.3. Let E ⊂ T be a ∇-measurable set and p ∈ R̄ ≡ R ∪ {−∞,+∞} be
such that p ≥ 1 and let f : E → R̄ be ∇-measurable function. We say that f belongs
to Lp∇(E) provided that either∫

E
|f |p(s)∇s <∞ if p ∈ R,

or there exists a constant M ∈ R such that
|f | ≤M ∇-a.e. on E, if p = +∞.

Lemma 2.1. Let E ⊂ T be a ∇-measurable set. If f : T → R is a ∇-integrable on
E, then ∫

E
f(s)∇s =

∫
E
f(s)ds+

∑
i∈IE

(
ti − ρ(ti)

)
f(ti),

where IE := {i ∈ I : ti ∈ E} and {ti}i∈I , I ⊂ N, is the set of all left-scattered points
of T.
Lemma 2.2. For any %(t) ∈ C([0, 1]T), the boundary value problem,

−ϕ($∆∇
1 (t)) = %(t), t ∈ [0, 1]T,(2.1)

(2.2)
α$1(0)− β$∆

1 (0) =
∫ 1

0
κ1(τ)$1(τ)∇,

γ$1(1) + δ$∆
1 (1) =

∫ 1

0
κ2(τ)$1(τ)∇,


has a unique solution

$1(t) =
∫ 1

0
ℵ(t, τ)ϕ−1(%(τ))∇τ,
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where

ℵ(t, τ) = ℵ0(t, τ) + η(t)
∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1.

Proof. Suppose $1 is a solution of (2.1), then

$1(t) = −
∫ t

0

∫ τ

0
ϕ−1(%(τ1))∇τ1∆τ+ At+B

= −
∫ t

0
(t− τ)ϕ−1(%(τ))∇τ+ A1t+ A2,

where A1 = $∆
1 (0) and A2 = $1(0). By the conditions (2.2), we get

A1 = 1
d

∫ 1

0
[ακ2(τ)− γκ1(τ)]ϑ1(τ)∇τ+ 1

d

∫ 1

0
α[γ(1− τ) + δ]ϕ−1(%(τ))∇τ

and

A2 = 1
d

∫ 1

0
[(γ+ δ)κ1(τ) + βκ2(τ)]ϑ1(τ)∇τ+ 1

d

∫ 1

0
β[γ(1− τ) + δ]ϕ−1(%(τ))∇τ.

So, we have
(2.3)

$1(t) =
∫ 1

0
ℵ0(t, τ)ϕ−1(%(τ))∇τ+ a(t)

d

∫ 1

0
κ1(τ)ϑ1(τ)∇τ+ b(t)

d

∫ 1

0
κ2(τ)ϑ1(τ)∇τ.

By simple computations, we find that∫ 1

0
κ1(τ)ϑ1(τ)∇τ = c1(1− vb) + c2ub

(1− ua)(1− vb)− ubva
,(2.4)

∫ 1

0
κ2(τ)ϑ1(τ)∇τ = c2(1− ua) + c1va

(1− ua)(1− vb)− ubva
.(2.5)

Plugging (2.4) and (2.5) into (2.3), we received

$1(t) =
∫ 1

0
ℵ0(t, τ)ϕ−1(%(τ))∇τ+ c1η(t) + c2λ(t)

=
∫ 1

0

[
ℵ0(t, τ) + η(t)

∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1

]
× ϕ−1(%(τ))∇τ

=
∫ 1

0
ℵ(t, τ)ϕ−1(%(τ))∇τ.

This completes the proof. �

Lemma 2.3. Suppose (H1)-(H2) hold. For z ∈ (0, 1
2)T, let

L(z) = min
{
αz + β
α+ β ,

γz + δ
γ+ δ

}
< 1.

Then ℵ0(t, τ) have the following properties:
(i) 0 ≤ ℵ0(t, τ) ≤ ℵ0(τ, τ) for all t, τ ∈ [0, 1]T;
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(ii) L(z)ℵ0(τ, τ) ≤ ℵ0(t, τ) for all t ∈ [z, 1− z]T and τ ∈ [0, 1]T.

Proof. (i) is evident. We establish (ii), for this, let t ∈ [z, 1− z]T and t ≤ τ. Then
ℵ0(t, τ)
ℵ0(τ, τ) = b(t)

b(τ) = αt+ β
ατ+ β ≥

αz + β
α+ β ≥ L(z).

For τ ≤ t,
ℵ0(t, τ)
ℵ0(τ, τ) = a(t)

a(τ) = γ+ δ− γt
γ+ δ− γz ≥

γz + δ
γ+ δ ≥ L(z).

This completes the proof. �

Lemma 2.4. Suppose (H1)-(H2) hold. Then ℵ(t, τ) satisfies properties:
(i) 0 ≤ ℵ(t, τ) ≤ Ξℵ0(τ, τ) for all t, τ ∈∈ [0, 1]T;
(ii) 0 ≤ Ξzℵ0(τ, τ) ≤ ℵ(t, τ) for all t ∈ [z, 1− z]T and τ ∈ [0, 1]T, where

Ξ = 1 + η∗κ∗1 + λ∗κ∗2
and

Ξz = L(z)
[
1 + η(z)κ1(z) + λ(z)κ2(z)

]
.

Proof. From Lemma 2.3, we get

ℵ(t, τ) =ℵ0(t, τ) + η(t)
∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1

≤ℵ0(τ, τ) + η(t)
∫ 1

0
ℵ0(τ, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ, τ)κ2(τ1)∇τ1

≤
[
1 + η(t)

∫ 1

0
κ1(τ1)∇τ1 + λ(t)

∫ 1

0
κ2(τ1)∇τ1

]
ℵ0(τ, τ)

≤
[
1 + η∗κ∗1 + λ∗κ∗2

]
ℵ0(τ, τ).

On the other hand, for t ∈ [z, 1− z]T and τ ∈ [0, 1]T, we have

ℵ(t, τ) =ℵ0(t, τ) + η(t)
∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1

≥ℵ0(t, τ) + η(t)
∫ 1−z

z
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1−z

z
ℵ0(τ1, τ)κ2(τ1)∇τ1

≥L(z)
[
1 + η(t)

∫ 1−z

z
κ1(τ1)∇τ1 + λ(t)

∫ 1−z

z
κ2(τ1)∇τ1

]
ℵ0(τ, τ)

≥L(z)
[
1 + η∗∗κ∗∗1 + λ∗∗κ∗∗2

]
ℵ0(τ, τ).

This completes the proof. �

Notice that an `-tuple ($1(t), $2(t), $3(t), . . . , $`(t)) is a solution of the iterative
boundary value problem (1.1)–(1.2) if and only if

$j(t) =
∫ 1

0
ℵ(t, τ)ϕ−1

[
χ(τ)fj($j+1(τ))

]
∇τ, t ∈ [0, 1]T, 1 ≤ j ≤ `,

$`+1(t) = $1(t), t ∈ [0, 1]T,
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i.e.,

$1(t) =
∫ 1

0
ℵ(t, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)f2

(∫ 1

0
ℵ(τ2, τ3)

× ϕ−1
[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·

× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

Let B be the Banach space Cld([0, 1]T,R) with the norm ‖$‖ = maxt∈[0,1]T |$(t)|.
For z ∈

(
0, 1

2

)
, we define the cone Kz ⊂ B as

Kz =
{
$ ∈ B : $(t) is nonnegative and min

t∈[z, 1−z]T
$(t) ≥ Ξz

Ξ ‖$(t)‖
}
.

For any $1 ∈ Kz, define an operator Ω : Kz → B by

(Ω$1)(t) =
∫ 1

0
ℵ(t, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)f2

(∫ 1

0
ℵ(τ2, τ3)

× ϕ−1
[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·

× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

Lemma 2.5. Assume that (H1)-(H2) hold. Then for each z ∈
(
0, 1

2

)
, Ω(Kz) ⊂ Kz and

Ω : Kz → Kz is completely continuous.

Proof. From Lemma 2.3, ℵ(t, τ) ≥ 0 for all t, τ ∈ [0, 1]T. So, (Ω$1)(t) ≥ 0. Also, for
$1 ∈ K, we have

(Ω$1)(t) ≤Ξ
∫ 1

0
ℵ0(τ1, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)

× f2

(∫ 1

0
ℵ(τ2, τ3)ϕ−1

[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·

× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

So,

‖Ω$1‖ ≤Ξ
∫ 1

0
ℵ0(τ1, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)

× f2

(∫ 1

0
ℵ(τ2, τ3)ϕ−1

[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·
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× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

Again from Lemma 2.3, we get

min
t∈[z,1−z]T

{(Ω$1)(t)}

≥Ξz

∫ 1

0
ℵ0(τ1, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)

× f2

(∫ 1

0
ℵ(τ2, τ3)ϕ−1

[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·

× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1.

It follows from the above two inequalities that

min
t∈[z,1−z]T

{(Ω$1)(t)} ≥ Ξz

Ξ ‖Ω$1‖.

So, Ω$1 ∈ Kz and thus Ω(Kz) ⊂ Kz. Next, by standard methods and Arzela-Ascoli
theorem, it can be proved easily that the operator Ω is completely continuous. The
proof is complete. �

3. Denumerably Many Positive Solutions

For the existence of denumerably many positive solutions for iterative system of
boundary value problem (1.1), we apply following theorems.

Theorem 3.1 ([11]). Let E be a cone in a Banach space X and M1, M2 are open sets
with 0 ∈ M1, M1 ⊂ M2. Let A : E ∩ (M2\M1) → E be a completely continuous operator
such that

(a) ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂M1, and ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂M2, or
(b) ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂M1, and ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂M2.

Then A has a fixed point in E ∩ (M2\M1).

Theorem 3.2 ([8, 16]). Let f ∈ Lp∇(J), with p > 1, g ∈ Lq∇(J), with q > 1, and
1
p

+ 1
q

= 1. Then fg ∈ L1
∇(J) and ‖fg‖L1

∇
≤ ‖f‖Lp

∇
‖g‖Lq

∇
, where

‖f‖Lp
∇

:=


[ ∫

J
|f |p(s)∇s

] 1
p

, p ∈ R,

inf
{
M ∈ R / |f | ≤M ∇-a.e. on J

}
, p =∞,

and J = (a, b]T.
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Theorem 3.3 (Hölder’s). Let f ∈ Lpi
∇(J), with pi > 1, for i = 1, 2, . . . , n and∑n

i=1
1
pi

= 1. Then ∏n
i=1 fi ∈ L1

∇(J) and∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
1
≤

n∏
i=1
‖fi‖pi

.

Further, if f ∈ L1
∇(J) and g ∈ L∞∇ (J), then fg ∈ L1

∇(J) and ‖fg‖1 ≤ ‖f‖1‖g‖∞.

Consider the following three possible cases for χi ∈ Lpi
∇([0, 1]T) :

(i) ∑n
i=1

1
pi
< 1;

(ii) ∑n
i=1

1
pi

= 1;
(iii) ∑n

i=1
1
pi
> 1.

Firstly, we seek denumerably many positive solutions for the case ∑n
i=1

1
pi
< 1.

Theorem 3.4. Suppose (H1)-(H3) hold, let {zr}∞r=1 be a sequence with zr ∈ (tr+1, tr).
Let {Γr}∞r=1 and {Θr}∞r=1 be such that

Γr+1 <
Ξzr

Ξ Θr < Θr < ZΘr < Γr, r ∈ N,

where

Z = max
{[

Ξz1

n∏
i=1
δi

∫ 1−z1

z1
ℵ0(τ, τ)∇τ

]−1

, 1
}
.

Assume that f satisfies
(C1) fj($) ≤ ϕ(N1Γr) for all t ∈ [0, 1]T, 0 ≤ $ ≤ Γr, where

N1 <

[
Ξ ‖ℵ0‖Lq

∇

n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L

pi
∇

]−1

;

(C2) fj($) ≥ ϕ(ZΘr) for all t ∈ [zr, 1− zr]T, Ξzr

Ξ Θr ≤ $ ≤ Θr.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions
{($[r]

1 , $
[r]
2 , . . . , $

[r]
` )}∞r=1 such that $[r]

j (t) ≥ 0 on [0, 1]T, j = 1, 2, . . . , ` and r ∈ N.

Proof. Let
M1,r = {$ ∈ B : ‖$‖ < Γr},

M2,r = {$ ∈ B : ‖$‖ < Θr},
be open subsets of B. Let {zr}∞r=1 be given in the hypothesis and we note that

t∗ < tr+1 < zr < tr <
1
2 ,

for all r ∈ N. For each r ∈ N, we define the cone Kzr by

Kzr =
{
$ ∈ B : $(t) ≥ 0, min

t∈[zr, 1−zr]T
$(t) ≥ Ξzr

Ξ ‖$(t)‖
}
.
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Let $1 ∈ Kzr ∩ ∂M1,r. Then $1(τ) ≤ Γr = ‖$1‖ for all τ ∈ [0, 1]T. By (C1) and for
τ`−1 ∈ [0, 1]T, we have∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ` ≤ Ξ

∫ 1

0
ℵ0(τ`, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

≤ ΞN1Γr
∫ 1

0
ℵ0(τ`, τ`)ϕ−1

[
χ(τ`)

]
∇τ`

≤ ΞN1Γr
∫ 1

0
ℵ0(τ`, τ`)ϕ−1

[
n∏
i=1

χi(τ`)
]
∇τ`

≤ ΞN1Γr
∫ 1

0
ℵ0(τ`, τ`)

n∏
i=1

ϕ−1(χi(τ`))∇τ`.

There exists a q > 1 such that 1
q

+∑n
i=1

1
pi

= 1. So,∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ` ≤ ΞN1Γr

∥∥∥∥ℵ0

∥∥∥∥
Lq
∇

∥∥∥∥∥
n∏
i=1

ϕ−1(χi)
∥∥∥∥∥
L

pi
∇

≤ ΞN1Γr‖ℵ0‖Lq
∇

n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L

pi
∇

≤ Γr.

It follows in similar manner for τ`−2 ∈ [0, 1]T that∫ 1

0
ℵ(τ`−2, τ`−1)ϕ−1

[
χ(τ`−1)f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)]
∇τ`−1

≤
∫ 1

0
ℵ(τ`−2, τ`−1)ϕ−1

[
χ(τ`−1)f`−1(Γr)

]
∇τ`−1

≤Ξ
∫ 1

0
ℵ0(τ`−1, τ`−1)ϕ−1

[
χ(τ`−1)f`−1(Γr)

]
∇τ`−1

≤ΞN1Γr
∫ 1

0
ℵ0(τ`−1, τ`−1)ϕ−1

[
χ(τ`−1)

]
∇τ`−1

≤ΞN1Γr
∫ 1

0
ℵ0(τ`−1, τ`−1)ϕ−1

[
n∏
i=1

χi(τ`−1)
]
∇τ`−1

≤ΞN1Γr
∫ 1

0
ℵ0(τ`−1, τ`−1)

n∏
i=1

ϕ−1(χi(τ`−1))∇τ`−1

≤ΞN1Γr‖ℵ0‖Lq
∇

n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L

pi
∇

≤Γr.

Continuing with this bootstrapping argument, we get

(Ω$1)(t) =
∫ 1

0
ℵ(t, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)f2

(∫ 1

0
ℵ(τ2, τ3)
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× ϕ−1
[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·

× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1

≤Γr.

Since Γr = ‖$1‖ for $1 ∈ Kzr ∩ ∂M1,r we get

‖Ω$1‖ ≤ ‖$1‖.(3.1)

Let t ∈ [zr, 1− zr]T. Then

Θr = ‖$1‖ ≥ $1(t) ≥ min
t∈[zr,1−zr]T

$1(t) ≥ Ξzr

Ξ ‖$1‖ ≥
Ξzr

Ξ Θr.

By (C2) and for τ`−1 ∈ [zr, 1− zr]T, we have∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ` ≥ Ξzr

∫ 1−zr

zr

ℵ0(τ`, τ`)ϕ−1
[
χ(τ`)f`($1(τ`))

]
∇τ`

≥ ΞzrZΘr

∫ 1−zr

zr

ℵ0(τ`, τ`)ϕ−1(χ(τ`))∇τ`

≥ ΞzrZΘr

∫ 1−zr

zr

ℵ0(τ`, τ`)
n∏
i=1

ϕ−1(χi(τ`))∇τ`

≥ Ξz1ZΘr

n∏
i=1
δi

∫ 1−z1

z1
ℵ0(τ`, τ`)∇τ`

≥ Θr.

Continuing with bootstrapping argument we get

(Ω$1)(t) =
∫ 1

0
ℵ(t, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)f2

(∫ 1

0
ℵ(τ2, τ3)

× ϕ−1
[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·

× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1

≥Θr.

Thus, if $1 ∈ Kzr ∩ ∂K2,r, then

‖Ω$1‖ ≥ ‖$1‖.(3.2)

It is evident that 0 ∈ M2,k ⊂ M2,k ⊂ M1,k. From (3.1) and (3.2), it follows from Theorem
3.1 that the operator Ω has a fixed point $[r]

1 ∈ Kzr ∩
(
M1,r\M2,r

)
such that $[r]

1 (t) ≥ 0
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on [0, 1]T, and r ∈ N. Next setting $`+1 = $1, we obtain denumerably many positive
solutions {($[r]

1 , $
[r]
2 , . . . , $

[r]
` )}∞r=1 of (1.1)–(1.2) given iteratively by

$j(t) =
∫ 1

0
ℵ(t, τ)ϕ−1

[
χ(τ)fj($j+1(τ))

]
∇τ, t ∈ [0, 1]T, j = `, `− 1, . . . , 1.

The proof is completed. �

For ∑n
i=1

1
pi

= 1, we have the following theorem.

Theorem 3.5. Suppose (H1)-(H3) hold, let {zr}∞r=1 be a sequence with zr ∈ (tr+1, tr).
Let {Γr}∞r=1 and {Θr}∞r=1 be such that

Γr+1 <
Ξzr

Ξ Θr < Θr < ZΘr < Γr, r ∈ N,

where

Z = max
{[

Ξz1

n∏
i=1
δi

∫ 1−z1

z1
ℵ0(τ, τ)∇τ

]−1

, 1
}
.

Assume that f satisfies
(C3) fj($) ≤ ϕ(N2Γr) for all t ∈ [0, 1]T, 0 ≤ $ ≤ Γr, where

N2 < min


[
Ξ ‖ℵ0‖L∞∇

n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L

pi
∇

]−1

,Z

 ;

(C4) fj($) ≥ ϕ(ZΘr) for all t ∈ [zr, 1− zr]T, Ξzr

Ξ Θr ≤ $ ≤ Θr.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions
{($[r]

1 , $
[r]
2 , . . . , $

[r]
` )}∞r=1 such that $[r]

j (t) ≥ 0 on [0, 1]T, j = 1, 2, . . . , `, and r ∈ N.

Proof. For a fixed r, let M1,r be as in the proof of Theorem 3.4 and let $1 ∈ Kzr ∩∂M2,r.
Again $1(τ) ≤ Γr = ‖$1‖ for all τ ∈ [0, 1]T. By (C3) and for τ`−1 ∈ [0, 1]T, we have∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ` ≤ Ξ

∫ 1

0
ℵ0(τ`, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

≤ ΞN2Γr
∫ 1

0
ℵ0(τ`, τ`)ϕ−1

[
χ(τ`)

]
∇τ`

≤ ΞN2Γr
∫ 1

0
ℵ0(τ`, τ`)ϕ−1

[
n∏
i=1

χi(τ`)
]
∇τ`

≤ ΞN2Γr
∫ 1

0
ℵ0(τ`, τ`)

n∏
i=1

ϕ−1(χi(τ`))∇τ`

≤ ΞN2Γr‖ℵ0‖L∞∇
n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L

pi
∇

≤ Γr.
It follows in similar manner for τ`−2 ∈ [0, 1]T that∫ 1

0
ℵ(τ`−2, τ`−1)ϕ−1

[
χ(τ`−1)f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)]
∇τ`−1
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≤
∫ 1

0
ℵ(τ`−2, τ`−1)ϕ−1

[
χ(τ`−1)f`−1(Γr)

]
∇τ`−1

≤Ξ
∫ 1

0
ℵ0(τ`−1, τ`−1)ϕ−1

[
χ(τ`−1)f`−1(Γr)

]
∇τ`−1

≤ΞN2Γr
∫ 1

0
ℵ0(τ`−1, τ`−1)ϕ−1

[
χ(τ`−1)

]
∇τ`−1

≤ΞN2Γr
∫ 1

0
ℵ0(τ`−1, τ`−1)ϕ−1

[
n∏
i=1

χi(τ`−1)
]
∇τ`−1

≤ΞN2Γr
∫ 1

0
ℵ0(τ`−1, τ`−1)

n∏
i=1

ϕ−1(χi(τ`−1))∇τ`−1

≤ΞN2Γr‖ℵ0‖L∞∇
n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L

pi
∇

≤Γr.
Continuing with this bootstrapping argument, we get

(Ω$1)(t) =
∫ 1

0
ℵ(t, τ1)ϕ−1

χ(τ1)f1

(∫ 1

0
ℵ(τ1, τ2)ϕ−1

[
χ(τ2)f2

(∫ 1

0
ℵ(τ2, τ3)

× ϕ−1
[
χ(τ3)f3

(∫ 1

0
ℵ(τ3, τ4) · · ·

× f`−1

(∫ 1

0
ℵ(τ`−1, τ`)ϕ−1

[
χ(τ`)f`($1(τ`))

]
∇τ`

)
· · · ∇τ3

]
∇τ2

]
∇τ1

≤Γr.
Since Γr = ‖$1‖ for $1 ∈ Kzr ∩∂M1,r, we get ‖Ω$1‖ ≤ ‖$1‖. Now define M2,r = {$1 ∈
B : ‖$1‖ < Θr}. Let $1 ∈ Kzr ∩ ∂M2,r and let τ ∈ [zr, 1 − zr]T. Then the argument
leading to (3.2) can be done to the present case. Hence, the theorem is proved. �

Lastly, the case ∑n
i=1

1
pi
> 1.

Theorem 3.6. Suppose (H1)-(H2) hold, let {zr}∞r=1 be a sequence with zr ∈ (tr+1, tr).
Let {Γr}∞r=1 and {Θr}∞r=1 be such that

Γr+1 <
Ξzr

Ξ Θr < Θr < ZΘr < Γr, r ∈ N,

where

Z = max
{[

Ξz1

n∏
i=1
δi

∫ 1−z1

z1
ℵ0(τ, τ)∇τ

]−1

, 1
}
.

Assume that f satisfies
(C5) fj($) ≤ ϕ(N3Γr) for all t ∈ [0, 1]T, 0 ≤ $ ≤ Γr, where

N3 < min


[
Ξ ‖ℵ0‖L∞∇

n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L1
∇

]−1

,Z

 ;
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(C6) fj($) ≥ ϕ(ZΘr) for all t ∈ [zr, 1− zr]T,
Ξzr

Ξ Θr ≤ $ ≤ Θr.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions
{($[r]

1 , $
[r]
2 , . . . , $

[r]
` )}∞r=1 such that $[r]

j (t) ≥ 0 on [0, 1]T, j = 1, 2, . . . , `, and r ∈ N.

Proof. The proof is similar to the proof of Theorem 3.1. So, we omit the details
here. �

4. Examples

In this section, we present an example to check validity of our main results.
Example 4.1. Consider the following boundary value problem on T = [0, 1]

(4.1)
ϕ($′′j (t)) + χ(t)fj($j+1(t)) = 0, j = 1, 2, t ∈ [0, 1],
$3(t) = $1(t),

}

(4.2)
$j(0)−$′j(0) =

∫ 1

0

1
2$j(τ)dτ,

$j(1) +$′j(1) =
∫ 1

0

1
2$j(τ)dτ,


where

ϕ($) =


$3

1 +$2 , $ ≤ 0,
$2, $ > 0,

χ(t) =χ1(t) · χ2(t),
in which

χ1(t) = 1
|t− 1

4 |
1
2

and χ2(t) = 1
|t− 1

3 |
1
2
,

f1($) = f2($)

=



0.05× 10−8, $ ∈ (10−4,+∞),
5604×10−(8r+6)−0.05×10−8r

10−(4r+3)−10−4r ($ − 10−4r)
+0.05× 10−8r, $ ∈

[
10−(4r+3), 10−4r

]
,

5604× 10−(8r+6), $ ∈
(
0.98× 10−(4r+3), 10−(4r+3)

)
,

5604×10−(8r+6)−0.05×10−8r

0.98×10−(4r+3)−10−(4r+4) ($ − 10−(4r+4))
+0.05× 10−8r, $ ∈

(
10−(4r+4), 0.98× 10−(4r+3)

]
.

Let
tr = 31

64 −
r∑

k=1

1
4(k + 1)4 , zr = 1

2(tr + tr+1), for r = 1, 2, 3, . . . ,

then

z1 = 15
32 −

1
648 <

15
32 and tr+1 < zr < tr, zr >

1
5 , for r = 1, 2, 3, . . .
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Therefore, zr

1 = zr >
1
5 , j = 1, 2, 3, . . . It is clear that

t1 = 15
32 <

1
2 , tr − tr+1 = 1

4(r + 2)4 , r = 1, 2, 3, . . .

Since ∑∞x=1
1
x4 = π4

90 and ∑∞x=1
1
x2 = π2

6 , it follows that

t∗ = lim
r→∞

tr = 31
64 −

∞∑
k=1

1
4(r + 1)4 = 47

64 −
π4

360 = 0.4637941914,

χ1, χ2 ∈ Lp[0, 1] for 0 < p < 2, so δ1 = δ2 = 1√
3 ,

a(t) = 2− t, b(t) = 1 + t, d = 3, ℵ0(t, τ) = 1
3

{
(2− τ)(1 + t), t ≤ τ,
(2− t)(1 + τ), τ ≤ t,

ci =
∫ 1

0

[∫ 1

0
ℵ0(τ1, τ2)κi(τ1)∇τ1

]
χ(τ2)∇τ2 = 2.774076198,

ua = ub = va = vb = 1
4 , κ∗1 = κ∗2 = 1

2 , κ1(z1) = κ2(z1) = 0.06558641976,

L(z1) = min
{
αz1 + β
α+ β ,

γz1 + δ
γ+ δ

}
= 1 + z1

2 = 0.7336033950,

η(t) = (1− vb)a(t) + vab(t)
d[(1− ua)(1− vb)− ubva]

= 7− 2t
6 , η∗ = 7

6 , η(z1) = 1.010931070,

λ(t) = (1− ua)b(t) + uba(t)
d[(1− ua)(1− vb)− ubva]

= 5− 2t
6 , λ∗ = 5

6 , λ(z1) = 0.6775977366,

Ξ = 1 + η∗κ∗1 + λ∗κ∗2 = 2,

Ξz1 = L(z1)
[
1 + η(z1)κ1(z1) + λ(z1)κ2(z1)

]
= 0.8148459802.

Note that Ξz is increasing, it follows that 1.969391539 = Ξz∞ < Ξzr < Ξz1 = 2,
0.9846957695 ≤ Ξzr

Ξ ≤ 2 and∫ 1−z1

z1
ℵ0(τ, τ)∇τ =

∫ 1− 15
32 + 1

648

15
32−

1
648

(2− τ)(1 + τ)
3 dτ = 0.04918197800.

Thus, we get

Z = max
{[

Ξz1

n∏
i=1
δi

∫ 1−z1

z1
ℵ0(τ, τ)∇τ

]−1

, 1
}

= max
{

74.85826138, 1
}

= 74.85826138
and

‖ℵ0‖Lq
∇

=
[∫ 1

0
|ℵ0(τ, τ)|qdτ

] 1
q

< 1, for 0 < q < 2.

Next, let 0 < a < 1 be fixed. Then χ1, χ2 ∈ L1+a[0, 1]. It follows that

‖ϕ−1(χ1)‖1+a =
[ 1
3− a

(
3

3−a
4 + 1

)
2

1+a
2

] 1
1+a
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and

‖ϕ−1(χ2)‖1+a =
[ 4
3− a

(
2

3−a
4 + 1

)
(1/3)

3−a
4

] 1
1+a

.

So, for 0 < a < 1, we have

0.2509961333 ≤
[
Ξ ‖ℵ0‖Lq

∇

n∏
i=1

∥∥∥ϕ−1(χi)
∥∥∥
L

pi
∇

]−1

≤ 0.2856331500.

Taking N1 = 0.2. In addition, if we take
Γr = 10−4r, Θr = 10−(4r+3),

then

Γr+1 = 10−(4r+4) < 0.9846957695× 10−(4r+3) <
Ξzr

Ξ Θr < Θr = 10−(4r+3)

< Γr = 10−4r,

ZΘr = 74.85826138× 10−(4r+3) < 0.2× 10−4r = N1Γr, r = 1, 2, 3, . . . ,
and f1, f2 satisfies the following growth conditions:

f1($) = f2($) ≤ϕ(N1Γr) = N2
1Γ2

r = 0.04× 10−8r, $ ∈
[
0, 10−4r

]
f1($) = f2($) ≥ϕ(ZΘr) = Z2Θ2

r

= 5603.759297× 10−(8r+6), $ ∈
[
0.98× 10−(4r+3), 10−(4r+3)

]
.

Then all the conditions of Theorem 3.4 are satisfied. Therefore, by Theorem 3.4,
the iterative boundary value problem (4.1)–(4.2) has denumerably many solutions{(
$

[r]
1 , $

[r]
2

)}∞
r=1

such that $[r]
j (t) ≥ 0 on [0, 1], j = 1, 2 and r ∈ N.
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